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Tower Property of Conditional Expectation

Theorem (Tower Property)

Let H,G,F be σ-algebras such that H ⊂ G ⊂ F . Let X be an rv on
(Ω,F ,P). Then E [E [X |G]|H] = E [X |H].

Proof: We want to find r.v Y s.t. it is H-m’sble, and∫
H
YdP =

∫
H
E [X |G]dP ∀H ∈ H

But
∫
H E [X |G]dP =

∫
H XdP ∀H ∈ H.

And
∫
H E [X |H]dP =

∫
H XdP, ∀H ∈ H

Since Y is unique, it follows that Y = E [E [X |G]|H] = E [X |H] a.s



Tower Property: Example

Example

Let H ⊂ G ⊂ F be s.t. F = σ(X ,Y ,Z ), G = σ(Y ,Z ), H = σ(Z ).
Then E [X |G] becomes E [X |Y ,Z ].
Assuming X, Y, Z take discrete values,

E [X |Y = yj ,Z = zl ] = ∑
k

xkP(X = xk |Y = yj ,Z = zl )

Now, we compute E [E [X |Y ,Z ]|Z = zl ]:

= ∑
j

(
∑
k

xkP(X = xk ,Y = yj ,Z = zl )

P(Y = yj ,Z = zl )

)
P(Y = yj |Z = zl )

∴ = ∑
j

∑
k

xkP(X = xk ,Y = yj ,Z = zl )

P(Z = zl )



Continuing from the previous step

Example

E [E [X |Y ,Z ]|Z = zl ] = ∑
j

∑
k

xkP(X = xk ,Y = yj ,Z = zl )

P(Z = zl )

Changing the order of summations we get:

= ∑
k

xk ∑j P(X = xk ,Y = yj ,Z = zl )

P(Z = zl )

= ∑
k

xkP(X = xk ,Z = zl )

P(Z = zl )
= E [X |Z = zl ]



Property: Taking out what is known

Theorem

Let Z be an rv, G-measurable. Then E [XZ |G] = ZE [X |G].

Proof: Let Z = 1H , H ∈ G. ∴ E [XZ |G] = E [X · 1H |G].

Let Y be s.t.
∫
G YdP =

∫
G XZdP, G ∈ G.∫

G
YdP =

∫
G
X1HdP =

∫
G∩H

XdP (G ∩H ∈ G)

=
∫
G∩H

E [X |G]dP =
∫
G
E [X |G] · 1HdP

Thus we have shown Y = ZE [X |G], when Z is a indicator fn.



Proof for Taking out what is known (Cont.)

Suppose X ≥ 0. Zn a simple non-negative function that increases to
Z ≥ 0.

We have E [XZn|G] = ZnE [X |G].

By MCT E [XZ |G] = ZE [X |G]

Last step: X and Z need not be non-negative. We can always
decompose X and Z as: X = X+ − X−, Z = Z+ − Z− and then
replicate the proof for non-negative X and Z on the component pairs.



Conditional expectation when X is independent of G

Suppose X = IF and F is independent of all sets in G. Then,∫
G
IFdP = P(G ∩ F ) = P(G )P(F ) =

∫
G
P(F )dP

Thus, E (X |G) = EX when X is an indicator function. The proof
completes with standard machinery.



Martingale

Definition

A sequence of r.v’s Mn : n ≥ 0 is called a martingale if:

a) E |Mn| < ∞ ∀n ≥ 0.

b) E [Mn+1|M1,M2, . . . ,Mn] = Mn, ∀n ≥ 0.

Definition

Let Fn : n ≥ 1 be a collection of σ-algebras such that
Fn ⊂ Fn+1 ∀n ≥ 1. Let Xn, for each n, be a rv that is Fn-measurable.
Then (Fn : n ≥ 1) is said to be the filtration and (Xn : n ≥ 1) is said to
be a process adapted to the filteration.

Intuitively, Fn can be thought of collection of info available at time n, for
example winnings in a betting game for n rounds.



Martingale definition updated

Definition

A sequence of r.v’s Mn : n ≥ 0 adapted to (Ω,F ,Fn,P) (where
F0 ⊂ F1 ⊂ ... ⊂ F) is called a martingale if:

a) E |Mn| < ∞ ∀n ≥ 0.

b) E [Mn+1|Fn] = Mn, ∀n ≥ 0.



Example: Mean Zero Random Walk

Let Sn = ∑n
i=1 Xi , where E [Xi ] = 0 ∀i , and Xi ’s are independent.

a) Check integrability: E |Sn| = E |∑n
1 Xi | ≤ ∑n

i=1 E |Xi | < ∞ ✓

b) Check martingale property:

E [Sn+1|(X1, . . . ,Xn)] = E [Sn|(X1, . . . ,Xn)] + E [Xn+1|Fn] = Sn

∴ Sn, n ≥ 1 is a martingale.(Here, σ(X1, . . . ,Xn) ⊂ Fn for each n).



Example 2: Mean Zero Random Walk

Let Sn = ∑n
i=1 Xi , where E [Xi ] = 0 ∀i , and Xi ’s are independent.

Var(Xi ) = σ2 < ∞.

Let Mn = S2
n − nσ2.

a) Check martingale property:

E [Mn+1|(X1, . . . ,Xn)] = E [(Sn + Xn+1)
2 − (n+ 1)σ2|(X1, . . . ,Xn)]

= S2
n + EX 2

n+1 − (n+ 1)σ2 = Mn

∴ Mn, n ≥ 1 is a martingale.



Example 2: Product Martingale

Example

Let Mn = ∏n
i=1 Xi , where E [Xi ] = 1,Xi ≥ 0 ∀i , and Xi ’s are

independent.

a) E |Mn| = E |X1X2...Xn| = E |X1| · E |X2| · · ·E |Xn| < ∞ ✓
b)

E [Mn+1|Fn] = E [Mn · Xn+1|Fn]

= MnE [Xn+1|Fn]

= MnE [Xn+1] (∵ Xn+1&Fn are indept.)

= Mn. ✓

Thus Mn is a martingale.



Martingale Convergence Theorem

Theorem (Martingale Convergence Theorem)

If Mn is a martingale such that supn E |Mn| < ∞, then ∃M∞ s.t.
Mn → M∞ a.s.

A powerful theorem to prove non-trivial results



Example 3: Doob’s Martingale

Let X be a rv on (Ω,F ,Fn,P) such that E |X | < ∞.

Then Yn = E [X |Fn] is a martingale.

E |E [X |Fn]| ≤ E [E [|X ||Fn]] = E |X | < ∞ (Conditional Jensen’s) ∀n
⇒ supn E |Yn| < ∞ — (A)

E [Yn+1|Fn] = E [E [X |Fn+1]|Fn] = E [X |Fn] (By tower property)
= Yn — (B)

(A) (B) imply ∃Y∞ s.t. Yn = E [X |Fn] → Y∞ as n → ∞ (By
Martingale Convergence Theorem).



Example 4: Martingale Transform

Example

Given a martingale Mn, one can also construct other martingales from
that.

Cn is a predictable process if Cn is Fn−1-measurable ∀n.

Let Mn be a martingale defined over (Ω,F ,Fn,P). Fix M0 = c .

Let Yn = ∑n
k=1 Ck(Mk −Mk−1).

Assume |Cn| ≤ K ∀n.
Then Yn will be a martingale.



Example 4: Proof (Integrability)

Proof.

First, we check for integrability:

E |Yn| = E

∣∣∣∣∣ n

∑
k=1

Ck(Mk −Mk−1)

∣∣∣∣∣
≤

n

∑
k=1

E |Ck(Mk −Mk−1)|

≤
n

∑
k=1

KE |Mk −Mk−1|

≤
n

∑
k=1

K (E |Mk |+ E |Mk−1|)

< ∞ (∵ E |Mk | < ∞ ∀k) ✓



Example 4: Proof (Martingale Property)

Proof cont.

Next, we check the martingale property:

E [Yn − Yn−1|Fn−1] = E [Cn(Mn −Mn−1)|Fn−1]

= CnE [Mn −Mn−1|Fn−1]

= Cn(Mn−1 −Mn−1) = 0

⇒ E [Yn|Fn−1] = Yn−1 ✓

This process, known as a martingale transform, can be thought of as a
discrete analog of a stochastic integral.



Martingale Transform: Intuition

Cn can be thought of as the amount one has decided to bet in nth

round of a betting game which is determined by the winnings of last
n− 1 rounds, thus making Cn Fn−1-measurable;

(Mn −Mn−1) can be thought of the winning in nth round.

Observe that

E [Mn|Fn−1] = Mn−1 ∀n

⇒ E [Mn] = E [Mn−1] ∀n.



Stopping Time

Example

Let Sn = X1 + X2 + ...+ Xn where Xi = ±1 w.p. 1/2, ∀i denotes a
simple, symmetric random walk. Let τ = inf{n : Sn = +1}. τ is a rv that
is also a stopping time.

It can be shown that P(τ < ∞) = 1, but E [τ] = ∞.

Definition

rv τ is a stopping time if {ω : τ(ω) ≤ n} is Fn-msble for each n.
(Whether or not to stop the game at n depends on the information
available till time n).



Stopped process

Consider again the martingale

Yn =
n

∑
k=1

Ck(Mk −Mk − 1)

w.r.t. filtration {Fn}.

Set Cn = I (τ ≥ n). Then, Yn = Mn∧τ is a martingale w.r.t. filtration
{Fn}.

Consider stopping time

τ = min{n : Sn = A or Sn = −B}

where {Sn} is again a simple symmetric random walk and A,B are
positive integers.



Level crossing probability

To find the probability P(Sτ = A).

{Sn∧τ} is a martingale

{Sn∧τ} → Sτ as n → ∞ (since, P(τ < ∞) = 1).

By bounded convergence theorem, ESn∧τ → ESτ as n → ∞.

So ESτ = 0.

AP(Sτ = A)− BP(Sτ = −B) = 0 so that

P(Sτ = A) =
B

A+ B



Finding Eτ

Consider the martingale Mn = S2
n − n

Again {Mn∧τ} is a martingale

Mn∧τ → Mτ as n → ∞ (since, P(τ < ∞) = 1).

Further, Mn∧τ ≤ A2 + B2 + τ and E [τ] < ∞. By dominated
convergence theorem, EMτ = EM1 = 0

A2P(Sτ = A) + B2P(Sτ = B)− Eτ = 0.

Or
Eτ = AB.



Eτ < ∞

To see that Eτ < ∞, recall that

P(τ ≥ n(A+ B)) ≤ an

where

a = 1−
(
1

2

)A+B

.

Now for nonnegative integer τ,

Eτ =
∞

∑
n=1

P(τ ≥ n).

This implies that

Eτ < (A+ B) + (A+ B)
∞

∑
n=1

an < ∞.



Martingale Stopping Time Theorem

1 Let Mn be a martingale on (Ω,F ,Fn,P), τ be the stopping time.
M0 = c.

2 Then E [Mτ] = E [M1] if:

1 τ is bounded a.s. (∃K < ∞ s.t. P(τ < K ) = 1)

2 |Mn| ≤ K ∀n, and P(τ < ∞) = 1. (by DCT, Mn ↑ Mτ as n ↑ ∞,
E [Mn] ↑ E [Mτ ])

3 |Mn −Mn−1| ≤ K ∀n ≥ 1, and E [τ] < ∞.

3 (note that Mn = ∑n−1
k=1(Mk −Mk−1, so Mτ ≤ c +Kτ)



Martingale example

Alphabet symbols are picked independently, each of the 26 equally
likely. How many draws on average until one sees ABRACADABRA.

Consider a gamble where a new party bets Rs.1 at each time. If A
comes at the bet, the winning party wins 25 rupees and bets all of Rs
26 on B. If now B comes, it bets 26+ 25× 26 on R and so on.
Whenever this party loses, its overall loss equals Rs. 1.

Total winning of all parties at any time n is a martingale, and
expected total till time n is zero.

Suppose ABRACADABRA comes after time T . The total winnings of
all parties equals

2611 + 2611 + 26− T

Thus, ET = 2611 + 2611 + 26.



Submartingales

A sequence of r.v’s Mn : n ≥ 0 adapted to (Ω,F ,Fn,P) (where
F0 ⊂ F1 ⊂ ... ⊂ F) is called a sub-martingale (super-martingale) if:

a) E |Mn| < ∞ ∀n ≥ 0.

b) E [Mn+ 1|Fn] ≥ (≤)Mn, ∀n ≥ 0.



Submartingale Inequality

Let (Mn : n ≥ 0) be a non-negative submgle. M∗
n = sup0≤m≤n Mm.

Then, for a > 0,

P(M∗
n ≥ a) ≤ EMn

a
.

Pf. Let A = {M∗
n ≥ a}. Then A = ∪0≤m≤nAm,

where A0 = {M∗
0 ≥ a}, Am = {M∗

m−1 < a,Mm ≥ a} for each m.

Now

P(Am) ≤
∫
Am

Mm

a
dP ≤

∫
Am

Mn

a
dP

So,

P(M∗
n ≥ a) =

n

∑
m=0

P(Am) ≤
∫
A

Mn

a
dP


