Lecture Notes: Probability Set 3

Ashoka University

Fall 2025

Tower Property of Conditional Expectation

Theorem (Tower Property)

Let $\mathcal{H}, \mathcal{G}, \mathcal{F}$ be σ -algebras such that $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$. Let X be an rv on (Ω, \mathcal{F}, P) . Then $E[E[X|\mathcal{G}]|\mathcal{H}] = E[X|\mathcal{H}]$.

• **Proof:** We want to find r.v Y s.t. it is \mathcal{H} -m'sble, and

$$\int_{H} Y dP = \int_{H} E[X|\mathcal{G}] dP \ \forall H \in \mathcal{H}$$

- But $\int_H E[X|\mathcal{G}]dP = \int_H XdP \ \forall H \in \mathcal{H}$.
- And $\int_H E[X|\mathcal{H}]dP = \int_H XdP$, $\forall H \in \mathcal{H}$
- \bullet Since Y is unique, it follows that $Y=E[E[X|\mathcal{G}]|\mathcal{H}]=E[X|\mathcal{H}]$ a.s

Tower Property: Example

Example

Let $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$ be s.t. $\mathcal{F} = \sigma(X, Y, Z)$, $\mathcal{G} = \sigma(Y, Z)$, $\mathcal{H} = \sigma(Z)$.

Then $E[X|\mathcal{G}]$ becomes E[X|Y,Z].

Assuming X, Y, Z take discrete values,

$$E[X|Y = y_j, Z = z_l] = \sum_{i} x_k P(X = x_k | Y = y_j, Z = z_l)$$

Now, we compute $E[E[X|Y,Z]|Z=z_I]$:

$$= \sum_{j} \left(\sum_{k} \frac{x_{k} P(X = x_{k}, Y = y_{j}, Z = z_{l})}{P(Y = y_{j}, Z = z_{l})} \right) P(Y = y_{j} | Z = z_{l})$$

$$\sum_{k} \sum_{k} \sum_{l} x_{k} P(X = x_{k}, Y = y_{l}, Z = z_{l})$$

$$\therefore = \sum_{i} \sum_{k} \frac{x_k P(X = x_k, Y = y_j, Z = z_l)}{P(Z = z_l)}$$

Continuing from the previous step

Example

$$E[E[X|Y,Z]|Z=z_I] = \sum_{i} \sum_{k} \frac{x_k P(X=x_k, Y=y_j, Z=z_I)}{P(Z=z_I)}$$

Changing the order of summations we get:

$$=\sum_{k}\frac{x_{k}\sum_{j}P(X=x_{k},Y=y_{j},Z=z_{l})}{P(Z=z_{l})}$$

$$= \sum_{k} \frac{x_k P(X = x_k, Z = z_l)}{P(Z = z_l)} = E[X|Z = z_l]$$

Property: Taking out what is known

Theorem

Let Z be an rv, G-measurable. Then E[XZ|G] = ZE[X|G].

- **Proof:** Let $Z = \mathbb{1}_H$, $H \in \mathcal{G}$. $\therefore E[XZ|\mathcal{G}] = E[X \cdot \mathbb{1}H|\mathcal{G}]$.
- Let Y be s.t. $\int_G YdP = \int_G XZdP$, $G \in \mathcal{G}$.

$$\int_{G} Y dP = \int_{G} X \mathbb{1}_{H} dP = \int_{G \cap H} X dP \quad (G \cap H \in \mathcal{G})$$

$$= \int_{G \cap H} E[X|\mathcal{G}] dP = \int_{G} E[X|\mathcal{G}] \cdot \mathbb{1}_{H} dP$$

• Thus we have shown $Y = ZE[X|\mathcal{G}]$, when Z is a indicator fn.

Proof for Taking out what is known (Cont.)

- Suppose $X \ge 0$. Z_n a simple non-negative function that increases to $Z \ge 0$.
- We have $E[XZ_n|\mathcal{G}] = Z_nE[X|\mathcal{G}].$
- By MCT $E[XZ|\mathcal{G}] = ZE[X|\mathcal{G}]$
- Last step: X and Z need not be non-negative. We can always decompose X and Z as: $X = X^+ X^-$, $Z = Z^+ Z^-$ and then replicate the proof for non-negative X and Z on the component pairs.

Conditional expectation when X is independent of $\mathcal G$

• Suppose $X = I_F$ and F is independent of all sets in G. Then,

$$\int_{G}I_{F}dP=P(G\cap F)=P(G)P(F)=\int_{G}P(F)dP$$

Thus, $E(X|\mathcal{G}) = EX$ when X is an indicator function. The proof completes with standard machinery.

Martingale

Definition

A sequence of r.v's M_n : $n \ge 0$ is called a martingale if:

- **3** $E[M_{n+1}|M_1, M_2, ..., M_n] = M_n, \forall n \geq 0.$

Definition

Let \mathcal{F}_n : $n \ge 1$ be a collection of σ -algebras such that

$$\mathcal{F}_n\subset\mathcal{F}_{n+1}\quad \forall n\geq 1.$$
 Let X_n , for each n , be a rv that is \mathcal{F}_n -measurable. Then $(\mathcal{F}_n:n\geq 1)$ is said to be the filtration and $(X_n:n\geq 1)$ is said to

Then $(\mathcal{F}_n : n \ge 1)$ is said to be the filtration and $(X_n : n \ge 1)$ is said to be a process adapted to the filteration.

Intuitively, \mathcal{F}_n can be thought of collection of info available at time n, for example winnings in a betting game for n rounds.

Martingale definition updated

Definition

A sequence of r.v's $M_n: n \geq 0$ adapted to $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ (where $\mathcal{F}_0 \subset \mathcal{F}1 \subset ... \subset \mathcal{F}$) is called a martingale if:

Example: Mean Zero Random Walk

- Let $S_n = \sum_{i=1}^n X_i$, where $E[X_i] = 0 \quad \forall i$, and X_i 's are independent.
 - ① Check integrability: $E|S_n| = E|\sum_{i=1}^n X_i| \leq \sum_{i=1}^n E|X_i| < \infty$
 - Oheck martingale property:

$$E[S_{n+1}|(X_1,\ldots,X_n)] = E[S_n|(X_1,\ldots,X_n)] + E[X_{n+1}|\mathcal{F}_n] = S_n$$

• $\therefore S_n, n \ge 1$ is a martingale.(Here, $\sigma(X_1, \dots, X_n) \subset \mathcal{F}_n$ for each n).

Example 2: Mean Zero Random Walk

- Let $S_n = \sum_{i=1}^n X_i$, where $E[X_i] = 0 \quad \forall i$, and X_i 's are independent. $Var(X_i) = \sigma^2 < \infty$.
- Let $M_n = S_n^2 n\sigma^2$.
 - Oheck martingale property:

$$E[M_{n+1}|(X_1,...,X_n)] = E[(S_n + X_{n+1})^2 - (n+1)\sigma^2|(X_1,...,X_n)]$$

= $S_n^2 + EX_{n+1}^2 - (n+1)\sigma^2 = M_n$

• M_n , $n \ge 1$ is a martingale.

Example 2: Product Martingale

Example

Let $M_n = \prod_{i=1}^n X_i$, where $E[X_i] = 1, X_i \ge 0 \quad \forall i$, and X_i 's are independent.

$$\begin{split} E[M_{n+1}|\mathcal{F}_n] &= E[M_n \cdot X_{n+1}|\mathcal{F}_n] \\ &= M_n E[X_{n+1}|\mathcal{F}_n] \\ &= M_n E[X_{n+1}] \quad (\because X_{n+1} \& \mathcal{F}_n \text{ are indept.}) \\ &= M_n. \quad \checkmark \end{split}$$

Thus M_n is a martingale.

Martingale Convergence Theorem

Theorem (Martingale Convergence Theorem)

If M_n is a martingale such that $\sup_n E|M_n|<\infty$, then $\exists M_\infty$ s.t. $M_n\to M_\infty$ a.s.

A powerful theorem to prove non-trivial results

Example 3: Doob's Martingale

- Let X be a rv on $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ such that $E|X| < \infty$.
- Then $Y_n = E[X|\mathcal{F}_n]$ is a martingale.
- $E|E[X|\mathcal{F}_n]| \le E[E[|X||\mathcal{F}_n]] = E|X| < \infty$ (Conditional Jensen's) $\forall n \Rightarrow \sup_n E|Y_n| < \infty$ (A)
- $E[Y_{n+1}|\mathcal{F}n] = E[E[X|\mathcal{F}_{n+1}]|\mathcal{F}_n] = E[X|\mathcal{F}n]$ (By tower property) = Y_n — (B)
- (A) (B) imply $\exists Y_{\infty}$ s.t. $Y_n = E[X|\mathcal{F}n] \to Y_{\infty}$ as $n \to \infty$ (By Martingale Convergence Theorem).

Example 4: Martingale Transform

Example

Given a martingale M_n , one can also construct other martingales from that.

- C_n is a predictable process if C_n is \mathcal{F}_{n-1} -measurable $\forall n$.
- Let M_n be a martingale defined over $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$. Fix $M_0 = c$.
- Let $Y_n = \sum_{k=1}^n C_k (M_k M_{k-1})$.
- Assume $|C_n| \leq K \quad \forall n$.

Then Y_n will be a martingale.

Example 4: Proof (Integrability)

Proof.

First, we check for integrability:

$$E|Y_n| = E \left| \sum_{k=1}^n C_k (M_k - M_{k-1}) \right|$$

$$\leq \sum_{k=1}^n E|C_k (M_k - M_{k-1})|$$

$$\leq \sum_{k=1}^n KE|M_k - M_{k-1}|$$

$$\leq \sum_{k=1}^n K(E|M_k| + E|M_{k-1}|)$$

$$< \infty \quad (\because E|M_k| < \infty \quad \forall k) \quad \checkmark$$

Example 4: Proof (Martingale Property)

Proof cont.

Next, we check the martingale property:

$$E[Y_{n} - Y_{n-1} | \mathcal{F}_{n-1}] = E[C_{n}(M_{n} - M_{n-1}) | \mathcal{F}_{n-1}]$$

$$= C_{n}E[M_{n} - M_{n-1} | \mathcal{F}_{n-1}]$$

$$= C_{n}(M_{n-1} - M_{n-1}) = 0$$

$$\Rightarrow E[Y_{n} | \mathcal{F}_{n-1}] = Y_{n-1} \quad \checkmark$$

This process, known as a martingale transform, can be thought of as a discrete analog of a stochastic integral.

Martingale Transform: Intuition

- C_n can be thought of as the amount one has decided to bet in n^{th} round of a betting game which is determined by the winnings of last n-1 rounds, thus making C_n \mathcal{F}_{n-1} -measurable;
- $(M_n M_{n-1})$ can be thought of the winning in n^{th} round.

Observe that

$$E[M_n|\mathcal{F}_{n-1}] = M_{n-1} \quad \forall n$$

 $\Rightarrow E[M_n] = E[M_{n-1}] \quad \forall n.$

Stopping Time

Example

Let $S_n = X_1 + X_2 + ... + X_n$ where $X_i = \pm 1$ w.p. 1/2, $\forall i$ denotes a simple, symmetric random walk. Let $\tau = \inf\{n : S_n = +1\}$. τ is a rv that is also a stopping time.

It can be shown that $P(\tau < \infty) = 1$, but $E[\tau] = \infty$.

Definition

rv τ is a stopping time if $\{\omega : \tau(\omega) \leq n\}$ is \mathcal{F}_{n} -msble for each n. (Whether or not to stop the game at n depends on the information available till time n).

Stopped process

• Consider again the martingale

$$Y_n = \sum_{k=1}^n C_k (M_k - Mk - 1)$$

w.r.t. filtration $\{\mathcal{F}_n\}$.

- Set $C_n = I(\tau \ge n)$. Then, $Y_n = M_{n \wedge \tau}$ is a martingale w.r.t. filtration $\{\mathcal{F}_n\}$.
- Consider stopping time

$$\tau = \min\{n : S_n = A \text{ or } S_n = -B\}$$

where $\{S_n\}$ is again a simple symmetric random walk and A, B are positive integers.

Level crossing probability

- To find the probability $P(S_{\tau} = A)$.
- $\{S_{n\wedge\tau}\}$ is a martingale
- $\{S_{n\wedge \tau}\} \to S_{\tau}$ as $n \to \infty$ (since, $P(\tau < \infty) = 1$).
- By bounded convergence theorem, $ES_{n\wedge \tau} \to ES_{\tau}$ as $n \to \infty$.
- So $ES_{\tau}=0$.
- $AP(S_{\tau}=A)-BP(S_{\tau}=-B)=0$ so that

$$P(S_{\tau} = A) = \frac{B}{A + B}$$

Finding $E\tau$

- Consider the martingale $M_n = S_n^2 n$
- Again $\{M_{n\wedge\tau}\}$ is a martingale
- $M_{n\wedge \tau} \to M_{\tau}$ as $n \to \infty$ (since, $P(\tau < \infty) = 1$).
- Further, $M_{n\wedge \tau} \leq A^2 + B^2 + \tau$ and $E[\tau] < \infty$. By dominated convergence theorem, $EM_{\tau} = EM_1 = 0$

$$A^{2}P(S_{\tau}=A) + B^{2}P(S_{\tau}=B) - E\tau = 0.$$

Or

$$E\tau = AB$$
.

$E\tau < \infty$

• To see that $E\tau < \infty$, recall that

$$P(\tau \ge n(A+B)) \le a^n$$

where

$$a=1-\left(\frac{1}{2}\right)^{A+B}.$$

Now for nonnegative integer τ ,

$$E\tau = \sum_{n=1}^{\infty} P(\tau \ge n).$$

This implies that

$$E\tau < (A+B) + (A+B) \sum_{n=1}^{\infty} a^n < \infty.$$

Martingale Stopping Time Theorem

- Let M_n be a martingale on $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$, τ be the stopping time. $M_0 = c$.
- ② Then $E[M_{\tau}] = E[M_1]$ if:
 - τ is bounded a.s. $(\exists K < \infty \text{ s.t. } P(\tau < K) = 1)$
 - $|M_n| \le K \quad \forall n, \text{ and } P(\tau < \infty) = 1. \text{ (by DCT, } M_n \uparrow M_\tau \text{ as } n \uparrow \infty, \\ E[M_n] \uparrow E[M_\tau])$
 - $|M_n M_{n-1}| \le K \quad \forall n \ge 1, \text{ and } E[\tau] < \infty.$
- (note that $M_n = \sum_{k=1}^{n-1} (M_k M_{k-1})$, so $M_{\tau} \le c + K\tau$)

Martingale example

- Alphabet symbols are picked independently, each of the 26 equally likely. How many draws on average until one sees ABRACADABRA.
- Consider a gamble where a new party bets Rs.1 at each time. If A comes at the bet, the winning party wins 25 rupees and bets all of Rs 26 on B. If now B comes, it bets $26 + 25 \times 26$ on R and so on. Whenever this party loses, its overall loss equals Rs. 1.
- Total winning of all parties at any time *n* is a martingale, and expected total till time *n* is zero.
- Suppose ABRACADABRA comes after time T. The total winnings of all parties equals $26^{11} + 26^{11} + 26 T$

• Thus,
$$ET = 26^{11} + 26^{11} + 26$$
.

Submartingales

- A sequence of r.v's M_n : $n \ge 0$ adapted to $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$ (where $\mathcal{F}_0 \subset \mathcal{F}1 \subset ... \subset \mathcal{F}$) is called a sub-martingale (super-martingale) if:

Submartingale Inequality

• Let $(M_n : n \ge 0)$ be a non-negative submgle. $M_n^* = \sup_{0 \le m \le n} M_m$. Then, for a > 0,

$$P(M_n^* \geq a) \leq \frac{EM_n}{a}$$
.

- **Pf.** Let $A = \{M_n^* \ge a\}$. Then $A = \bigcup_{0 \le m \le n} A_m$,
- where $A_0 = \{M_0^* \ge a\}$, $A_m = \{M_{m-1}^* < a, M_m \ge a\}$ for each m.
- Now

$$P(A_m) \le \int_{A_m} \frac{M_m}{a} dP \le \int_{A_m} \frac{M_n}{a} dP$$

So,

$$P(M_n^* \ge a) = \sum_{m=0}^n P(A_m) \le \int_A \frac{M_n}{a} dP \quad \Box$$