Definition Note Fact

Stochastic Calculus: Probability notes - Set 2

Example: Convergence in Prob ⇒ a.s. Convergence

Example (where convergence in prob ⇒ a.s. convergence)

Consider a circle with unit circumference.

Define
$$X_n(\omega) := \mathbb{1}_{[C_{n-1}, C_n]}$$

$$P[X_n = 1] = \frac{1}{n}, \quad \forall n \ge 1$$

$$P[|X_n| > \epsilon] = P[X_n = 1] = \frac{1}{n}$$

Taking limit $n \to \infty$ on both sides, we get:

Example: Convergence in Prob ⇒ a.s. Convergence (Cont.)

Example (continued)

$$P[|X_n| > \epsilon] \to 0 \quad \text{as } n \to \infty$$

 $\Rightarrow X_n \stackrel{P}{\to} 0$

On the other hand, each point will be hit infinitely often. So

$$P(\{\omega: X_n(\omega) = 1 \text{ infinitely often}\}) = 1$$

 $\Rightarrow X_n \stackrel{a.s.}{\longrightarrow} 0.$

Continuity of Probability Measures

• if $A_n \uparrow A$, let $\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$. [thus limit of an increasing sequence of sets is their union.]

$$\Rightarrow P(A_n) \uparrow P(\bigcup_{n=1}^{\infty} A_n)$$
 [Continuity of prob msr]

• Alternatively, as $n \to \infty$ for $\{B_n\}_{n \ge 1}$ where $B_n \downarrow B$, we have $\lim B_n \downarrow \bigcap_{n=1}^{\infty} B_n$.

$$\Rightarrow P(B_n) \downarrow P(\bigcap_{n=1}^{\infty} B_n) \text{ as } n \to \infty.$$

Proof of Continuity of Probability Measures

- Construct C_n 's from A_n 's: $C_n = A_n \setminus A_{n-1}$.
- By construction, $\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} C_i$ and C_i 's are disjoint.

$$P(\bigcup_{i=1}^{n} C_{i}) = \sum_{i=1}^{n} P(C_{i})$$

$$= \sum_{i=1}^{n} [P(A_{i}) - P(A_{i-1})] = P(A_{n})$$

- Also, $P(\bigcup_{i=1}^{\infty} C_i) = \sum_{i=1}^{\infty} P(C_i) = \lim_n \sum_{i=1}^n P(C_i) = \lim_n P(A_n)$.
- $\Rightarrow P(A_n) \uparrow P(\bigcup_{i=1}^{\infty} C_i) = P(\bigcup_{i=1}^{\infty} A_i).$

• To see that $X_n \xrightarrow{a.s.} X$ implies that $X_n \xrightarrow{prob} X$ recall that

$$\bigcap_{m=1}^{\infty}\bigcup_{N=1}^{\infty}\bigcap_{n\geq N}\{\omega:|X_n(\omega)-X(\omega)|<\frac{1}{m}\}=\{\omega:X_n(\omega)\to X(\omega)\}$$

so that a.s. convergence implies

$$P\left(\bigcup_{N=1}^{\infty}\bigcap_{n\geq N}\{\omega:|X_{n}(\omega)-X(\omega)|<\frac{1}{m}\}\right)=1$$

$$\Rightarrow \forall \epsilon>0, \quad P\left(\bigcup_{N=1}^{\infty}\bigcap_{n\geq N}\{\omega:|X_{n}(\omega)-X(\omega)|\leq \epsilon\}\right)=1$$

$$\Rightarrow P\left(\bigcap_{N=1}^{\infty}\bigcup_{n=N}^{\infty}\{\omega:|X_{n}(\omega)-X(\omega)|>\epsilon\}\right)=0$$

Let $B_N = \bigcup_{n=N}^{\infty} \{\omega : |X_n(\omega) - X(\omega)| > \epsilon\}$. From continuiy, it follows that

$$\lim_{N \to \infty} P(B_N) = 0 \tag{1}$$

Now, $X_n \xrightarrow{P} X$ if

$$\lim_{n\to\infty} P(\{\omega : |X_n(\omega) - X(\omega)| > \epsilon\}) = 0$$

Since,

$$\{\omega: |X_n(\omega)-X(\omega)|>\epsilon\}\subset \bigcup_{k=n}^{\infty}\{\omega: |X_k(\omega)-X(\omega)|>\epsilon\}$$

Convergence in probability follows from (1).

Borel-Cantelli Lemma I

• A sequence of sets $\{A_n\}$ occurring infinitely often corresponds to

$${A_n, i.o.} := \limsup A_n := \cap_m \cup_{n \ge m} A_n.$$

Borel Cantelli Lemma 1: If

$$\sum_{n} P(A_n) < \infty,$$

then $P(A_n, i.o.) = 0$.

• Proof follows as for all m,

$$P(A_n, i.o.) \leq P(\bigcup_{n \geq m} A_n) \leq \sum_{n=m}^{\infty} P(A_n).$$

Other Types of Convergence I

 L^p convergence. $(p \ge 1)$ L^p -space: $\mathcal{L}^p(\Omega, \mathcal{F}, P)$. All rvs in (Ω, \mathcal{F}, P) are s.t. $E|X|^p < \infty$.

$$X_n \xrightarrow{L^p} X$$
 if $E|X_n - X|^p \to 0$

Norm in L^p space: $||X||_p = (E(|X|^p))^{1/p}$.

Convergence in Distribution $X_n \xrightarrow{D} X$ if

$$F_n(x) \to F(x)$$
 continuity pts. of F.

That is, if $P(X_n \le x) \to P(X \le x) \quad \forall$ continuity pts. of F.

Equivalently, convergence in distribution if $E[f(X_n)] \to E[f(X)] \quad \forall f$ that are bounded and continuous real-valued functions.

Useful when discussing random elements (instead of rv) taking values in general spaces

Relationships Between Convergence Types

- L^2 convergence \Rightarrow convergence in probability.
- L^2 Convergence does not imply a.s. convergence.
- a.s. convergence implies convergence in probability (not vice-versa).

Example (where $X_n \xrightarrow{a.s.} X$, but $X_n \not\stackrel{L_p}{\nearrow} X$)

 $\Omega = [0,1], X_n(\omega) = n$ if $\omega \in [0,1/n], = 0$ otherwise. It was shown earlier that $X_n \xrightarrow{a.s.} 0$. However, $E|X_n| = 1 \quad \forall n$.

$$\Rightarrow X_n \not\stackrel{L_1}{\longrightarrow} (X=0).$$

The result can be extended to L^p -space by setting $X_n(\omega) = n^{1/p}$ if $\omega \in [0, 1/n]$; 0 otherwise.

Example (where $X_n \xrightarrow{L_1} X \& X_n \xrightarrow{a.s.} X$)

Consider as before the points on a unit circumference circle. $C_0=0$,

$$C_n = (C_{n-1} + 1/n) \mod 1$$
$$\Omega = [0, 1]$$

$$X_n = \mathbb{1}_{[C_{n-1}, C_n]} \Rightarrow X_n = 1 \text{ w.p. } 1/n, = 0 \text{ w.p. } 1-1/n.$$

$$E|X_n|=rac{1}{n}\Rightarrow \lim_{n\to\infty} E|X_n|=0\Rightarrow X_n\xrightarrow{L_1} (X=0)$$
. However,

$$X_n \xrightarrow{a.s.} (X = 0).$$

Law of Large Numbers (WLLN) I

WLLN Let $X_1, X_2, ..., X_n$ are iid rvs with mean μ and variance σ^2 (finite). Then

$$P\left[\left|\frac{S_n}{n}-\mu\right|>\epsilon
ight] o 0 \quad ext{as } n o \infty, \quad ext{where } S_n=\sum_{i=1}^n X_i.$$

$$\sigma^2 = Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

Proof of WLLN

Markov's inequality states: If $X \ge 0$, then $P(X \ge a) \le \frac{E[X]}{a}$. Why?

$$E[X] = \int_0^a x \, dF_X(x) + \int_a^\infty x \, dF_X(x)$$

$$\Rightarrow E[X] \ge \int_a^\infty a \, dF_X(x) = aP(X \ge a).$$

Now,

$$P(|X - \mu| > a) = P(|X - \mu|^2 \ge a^2) \le \frac{\operatorname{Var}(X)}{a^2}$$
 (Chebyshev's)

$$\therefore P\left(\left|\frac{S_n}{n} - \mu\right| > \epsilon\right) \le \frac{\operatorname{Var}(S_n/n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

Hence, LHS \rightarrow 0 as $n \rightarrow \infty$.

Strong LLN

- We'll show $\frac{S_n}{n} \xrightarrow{a.s.} \mu$ whenever $E[X_i^4] < \infty$. (A relaxed version of SLLN)
- WLOG, lets assume $\mu = 0$. [Shift of origin] & $E[X_i^4] \le K \quad \forall i$.
- Then

$$E[S_n^4] = E\left[\left(\sum_{i=1}^n X_i\right)^4\right] = nE[X_i^4] + 3n(n-1)(E[X_i^2])^2$$

(All terms having $E[X_i]$ equal zero)

• We also know $(E[X_i^2])^2 \le E[X_i^4]$ (by Jensen's inequality).

$$\Rightarrow E[S_n^4] \le nK + 3n(n-1)K$$
$$= nK + 3n^2K - 3nK \le 3n^2K$$

Proof of SLLN I

$$\therefore E\left[\left(\frac{S_n}{n}\right)^4\right] \leq \frac{3K}{n^2}$$

$$\therefore \sum_{n} E\left[\left(\frac{S_n}{n}\right)^4\right] \leq \sum_{n} \frac{3K}{n^2} < \infty$$

$$\Rightarrow \sum_{n} \left(\frac{S_n}{n} \right)^4 < \infty \quad \text{a.s.} \quad [\text{If } E[Z] < \infty \text{ for } Z \ge 0, \text{ then } Z < \infty \text{ a.s.}]$$

$$\Rightarrow \frac{S_n}{n} \to 0$$
 a.s.

Central Limit Theorem

Central Limit Theorem If $X_1, X_2, ..., X_n$ are iid rvs with mean μ and finite variance σ^2 , then (with $S_n = \sum_{i=1}^n X_i$)

$$\frac{\sqrt{n}}{\sigma} \left(\frac{S_n}{n} - \mu \right) \xrightarrow{D} N(0, 1)$$

In other words,

$$\frac{S_n}{n} \approx \mu + \frac{\sigma}{\sqrt{n}} Z$$
 where $Z \sim N(0, 1)$

Proof of Central Limit Theorem

Consider moment-generating and characteristic fns. of rv X.

MGF:
$$M_X(t) = E[e^{tX}]$$

Char GF:
$$\phi_X(t) = E[e^{itX}]$$
 $(i:\sqrt{-1})$

Claim (Important result)

Let $\{\phi_n\}_{n\geq 1}$ be the sequence of CGFs for rvs X_1,\ldots,X_n,\ldots . Then if $\phi_n(t)\to\phi(t)$, for all t, as $n\to\infty$ and $\phi(t)$ is continuous at 0, then the associated distribution functions $F_n\stackrel{D}{\to} F$ for some distribution function F.

• Characteristic fns. uniquely determine the distribution of rvs.

Proof of CLT (Characteristic Functions)

- If we can show $\phi_{\frac{S_n-n\mu}{\sigma\sqrt{n}}}(t) o \phi(t)$ where ϕ is CGF for N(0,1), we're done.
- Let $X \sim N(0,1)$. Then $\phi_X(t)$ equals

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{itx} e^{-x^2/2} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x^2 - 2itx - t^2) - t^2/2} dx$$

And this equals

$$=e^{-t^2/2}\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{(x-it)^2}{2}}dx=e^{-t^2/2}$$

Similarly,

$$\begin{aligned} \phi_n(t) &:= E \left[\exp \left(i \frac{S_n - n\mu}{\sigma \sqrt{n}} t \right) \right] \\ &= E \left[\exp \left(i \sum_{j=1}^n \frac{X_j - \mu}{\sigma \sqrt{n}} t \right) \right] \\ &= \left\{ E \left[\exp \left(i \frac{X - \mu}{\sigma \sqrt{n}} t \right) \right] \right\}^n = \left\{ \phi_{X - \mu} \left(\frac{t}{\sigma \sqrt{n}} \right) \right\}^n \end{aligned}$$

Now, trivially
$$\phi'_{X}(0) = iE[X], \; \phi''_{X}(0) = -E[X^{2}], \; \dots$$

Proof of CLT (Taylor Expansion)

Applying Taylor series, we get $\phi_{X-\mu}\left(rac{t}{\sigma\sqrt{n}}
ight)$

$$= 1 + iE[X - \mu] \left(\frac{t}{\sigma\sqrt{n}}\right) + \frac{1}{2}E[(X - \mu)^2] \left(\frac{it}{\sigma\sqrt{n}}\right)^2 + o\left(\frac{t^2}{\sigma^2n}\right)$$
$$1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)$$

$$\Rightarrow \lim_{n \to \infty} \left\{ \phi_{X-\mu} \left(\frac{t}{\sigma \sqrt{n}} \right) \right\}^n = \lim_{n \to \infty} \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right) \right)^n$$
$$= e^{-t^2/2}$$

Thus we have shown that $\frac{S_n - n\mu}{\sigma_1\sqrt{n}} \stackrel{D}{\to} N(0,1)$.

Fubini's Theorem

• In the simplest setting g(x, y) is a function on \mathbb{R}^2 . Then, by Fubini,

$$\int_{(x,y)\in\mathbb{R}^2} g(x,y) dx dy = \int_{x\in\mathbb{R}} \left(\int_{y\in\mathbb{R}} g(x,y) dy \right) dx$$

when $g(x,y) \ge 0$ always or when $\int_{(x,y)\in\mathbb{R}^2} |g(x,y)| dxdy < \infty$.

• This generalizes to space (Ω_1, Ω_2) , $\sigma-$ algebra on this space $\mathcal{F}_1 \times \mathcal{F}_2$, and associated product measure $\pi(A_1 \times A_2) = \mu_1(A_1) \times \mu_2(A_2)$ so that

$$\int_{(x,y)\in\Omega\times\Omega_2} g(x,y)\pi(dx\times dy)$$

equals

$$\int_{x \in \Omega_1} \left(\int_{y \in \Omega_2} g(x, y) \mu_2(dy) \right) \mu_1(dx)$$

Multi-variate Gaussian Distribution

Let $V=(V_1,V_2,\ldots,V_d)^T$ be an \mathbb{R}^d rv. $\mu=(\mu_1,\mu_2,\ldots,\mu_d)^T$ mean vector.

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{pmatrix} \quad \text{where } \forall i \geq 1, \sigma_{ii} = \sigma_i^2, \forall i \neq j, \sigma_{ij} = \sigma_i \sigma_j \rho_{ij}$$

Then the MVG density is given as:

$$f(\boldsymbol{V}) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{V} - \boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{V} - \boldsymbol{\mu})\right), \quad \forall \boldsymbol{V} \in \mathbb{R}^d$$

Bivariate Gaussian Distribution

• The joint pdf $f(v_1, v_2)$ equals

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\times \mathrm{e}^{\left(-\frac{1}{2(1-\rho^2)}\left[\left(\frac{\nu_1-\mu_1}{\sigma_1}\right)^2+\left(\frac{\nu_2-\mu_2}{\sigma_2}\right)^2-2\rho\frac{(\nu_1-\mu_1)(\nu_2-\mu_2)}{\sigma_1\sigma_2}\right]\right)}$$

 $\forall \mathbf{v} \in \mathbb{R}^2$.

- If $\rho = 0$, $f(v_1, v_2) = f_{V_1}(v_1) \cdot f_{V_2}(v_2)$.
- ullet \Rightarrow V_1 and V_2 are independent.

Example: Uncorrelated but Dependent Gaussian Variables

• Let X, $Y \sim N(0,1)$. Can we have X,Y to be uncorrelated, but still dependent?

Example

Let $X \sim N(0,1)$. Let Y = ZX, where $Z = \pm 1$ w.p. 1/2, ind. of X.

$$P[Y \le x] = P[ZX \le x] = P[Z = 1, X \le x] + P[Z = -1, X \ge -x]$$

$$= \frac{1}{2}P[X \le x] + \frac{1}{2}P[X \ge -x]$$

$$= P[X \le x]. \quad (\because \textit{Normal dist is symmetric.})$$

$$\Rightarrow Y \sim N(0, 1).$$

Now,
$$E[XY] = E[X \cdot ZX] = E[ZX^2] = 0$$
.

Also
$$E[X]E[Y] = 0$$
, $\Rightarrow \rho_{XY} = 0$.

However,
$$Y^2 = Z^2X^2 = X^2 \Rightarrow X\&Y$$
 are not independent.

In this example, joint density of X and Y does not exist. Visually, (Y, X) will always lie on this straight line hence no mass attained.

Multivariate Gaussian Distribution

Let
$$m{\theta} = (\theta_1, \theta_2, \dots, \theta_d)^T \in \mathbb{R}^d$$
.

Then $m{\phi_V}(m{\theta}) = E[e^{im{\theta}^Tm{V}}]$

$$= E[e^{i(\theta_1V_1 + \theta_2V_2 + \dots + \theta_dV_d)}]$$

$$= e^{im{\theta}^Tm{\mu} - \frac{1}{2}m{\theta}^T\Sigmam{\theta}} \quad \text{(through direct calculation)}$$

- \Rightarrow $\mathbf{V} \sim \mathit{MVG}(\mu, \Sigma)$ iff for $\theta \in \Re^d$, $\theta^T V \sim \mathit{UVG}(\theta^T \mu, \theta^T \Sigma \theta)$.
- If $\mathbf{V} \sim MVG(\mu, \Sigma)$, then $A\mathbf{V} \sim MVG(A\mu, A\Sigma A^T)$.

Formal definition of independence

• Random variables X&Y are said to be independent if:

$$P(A \cap B) = P(A)P(B), \quad \forall A \in \sigma(X), B \in \sigma(Y).$$

X&Y are independent iff

$$E[G(X)H(Y)] = E[G(X)]E[H(Y)].$$

for all Borel measurable G and H (assuming all expectations are well defined)

• Let $f_{X,Y}(x,y)$ be the joint density of X&Y. Then the marginal distribution of X is:

$$f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) dy$$

Similarly, $f_Y(y)$.

Independence and Joint Density I

Claim (Show)

X&Y are independent iff $f_{X,Y}(x,y)=f_X(x)f_Y(y)$ \forall all (x,y) almost everywhere.

To see this, first assume X&Y are independent. Then, for $A\in\sigma(X),\,B\in\sigma(Y)$,

$$P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B)$$

$$\Rightarrow \int_{A} \int_{B} f_{X,Y}(x, y) dx dy = \int_{A} f_{X}(x) dx \int_{B} f_{Y}(y) dy$$

Let $A = (-\infty, u]$ and $B = (-\infty, v]$.

$$\Rightarrow \int_{-\infty}^{u} \int_{-\infty}^{v} f_{X,Y}(x,y) dy dx = \int_{-\infty}^{u} f_{X}(x) dx \int_{-\infty}^{v} f_{Y}(y) dy$$

Independence and Joint Density II

Differentiating both sides w.r.t. u and v gives us:

$$f_{X,Y}(u,v) = f_X(u) \cdot f_Y(v).$$

For other direction, $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ through Fubini easily implies

$$P[X \in A, Y \in B] = P[X \in A]P[Y \in B]$$

Conditional Expectations (Discrete Case)

Conditional Expectations Let X&Y be 2 rv's assuming values $\mathcal{X} = \{x_1, \dots, x_k\}$; $\mathcal{Y} = \{y_1, \dots, y_m\}$. Then,

$$P[X = x_i | Y = y_j] = \frac{P[X = x_i, Y = y_j]}{P[Y = y_j]}$$

$$E[X|Y = y_j] = \sum_i x_i \cdot P[X = x_i|Y = y_j] = \sum_i x_i \frac{P[X = x_i, Y = y_j]}{P[Y = y_j]}$$

Partition Ω into m-many parts:

- Define $Z(\omega) := E[X|Y = y_j]$ if $Y(\omega) = y_j$. Then Z = E[X|Y] becomes an rv assuming m values and is $\sigma(Y)$ -measurable.
- For $A \in \mathcal{Y}$, it follows that

$$\sum_{y_j \in A} P[Y = y_j] \cdot E[X | Y = y_j] = \sum_{(x_i, y_j) \in \mathcal{X} \times A} x_i \cdot P[X = x_i, Y = y_j]$$

In other words

$$\int_{A} E[X|Y]dP = \int_{A} XdP$$

where A is defined on $\mathcal{X} \times \mathcal{Y}$.

Definition of Conditional Expectation w.r.t. σ -algebra

- Conditional expectation of an r.v. X defined on (Ω, \mathcal{F}, P) with $E|X| < \infty$ w.r.t. σ -algebra $\mathcal{G} \subset \mathcal{F}$ (Can be $\sigma(Y)$ or any generic σ -algebra) is defined as rv $E[X|\mathcal{G}]$ such that:
 - i) $E[X|\mathcal{G}]$ is \mathcal{G} -measurable.
 - ii) $\int_G E[X|\mathcal{G}]dP = \int_G XdP \quad \forall G \in \mathcal{G}.$

$E[X|\mathcal{G}]$ exists, and is unique.

• Assume that Y_1 and Y_2 are two versions of $E[X|\mathcal{G}]$.

$$\Rightarrow \int_{G} Y_{1}dP = \int_{G} XdP = \int_{G} Y_{2}dP, \quad \forall G \in \mathcal{G}$$
$$\Rightarrow \int_{G} (Y_{1} - Y_{2})dP = 0, \quad \forall G \in \mathcal{G}$$

- ullet If Y_1 , Y_2 are msrble, so are $Y_1 \pm Y_2$, $Y_1 \cdot Y_2$, Y_1/Y_2
- Let $G = \{\omega : Y_1(\omega) Y_2(\omega) > 0\} \in \mathcal{G}$.

$$\Rightarrow \int_{\mathcal{G}} (Y_1 - Y_2) dP = 0$$

$$\Rightarrow P(Y_1 - Y_2 \le 0) = 1$$
. Symmetrically, $P(Y_1 - Y_2 \ge 0) = 1$.

• Hence, $Y_1 = Y_2$ a.s.

Existence of Conditional Expectation

- If $\int_{X>0} XdP = 0 \Rightarrow P[X>0] = 0$.
- Because if not, $\exists m > 0$ s.t. P(X > 1/m) > 0.
- $\Rightarrow \int_{X>0} XdP \ge \frac{1}{m}P(X>1/m) > 0.$
- To prove existence of conditional expectation, we use the Radon-Nikodym Theorem.
- Let ν , μ be two measures defined on (Ω, \mathcal{F}) s.t. $\nu \ll \mu$. That is ν is absolutely continuous w.r.t. μ . This means that if $\mu(A) = 0 \Rightarrow \nu(A) = 0$. Or $\nu(A) > 0 \Rightarrow \mu(A) > 0$.

- RN Thm straightforward when (Ω, \mathcal{F}) is a discrete space: We have the representation $\nu(A) = \sum_{\omega \in A} f(\omega) \cdot \mu(\omega) = \int_A f \ d\mu$, where $f(\omega) = \frac{\nu(\omega)}{\mu(\omega)}$ will be well-defined ratio because of the fact that $\nu \ll \mu$.
- RN Thm extends this to general spaces: If $\nu \ll \mu$ then \exists a density function $f:\Omega \to \mathbb{R}$ which is \mathcal{F} -measurable and

$$\nu(A) = \int_A f d\mu.$$

- RV f is known as the RN derivative and denoted as: $f = \frac{dv}{du}(\omega)$.
- Assume $X \ge 0$. Define $\nu(G) = \int_G XdP$. Then $P(G) = 0 \Rightarrow \nu(G) = 0 \Rightarrow \nu \ll P$.
- By RN theorem, \exists an \mathcal{G} -measurable Y s.t., $\nu(\mathcal{G}) = \int_{\mathcal{G}} Y dP$.

Geometric view on conditional expectation

Consider $X \in L^2(\Omega, \mathcal{F}, P)$. $\mathcal{G} \subset \mathcal{F}$

$$L^2(\Omega, \mathcal{G}, P)$$
 is a subspace of $L^2(\Omega, \mathcal{F}, P)$.

Y is a projection of X on the subspace.

It minimizes $E[(X-W)^2]$ for all $W \in \mathcal{G}$.

Hence
$$E[(X - Y)Z] = 0 \quad \forall Z \in \mathcal{G}.$$

Thus, $E[X1_G] = E[Y1_G] \quad \forall G \in \mathcal{G}$. So, $Y = E[X|\mathcal{G}]$.

Properties of Conditional Expectation

i)
$$E[E[X|\mathcal{G}]] = E[X]$$
. $(:: \int_{\Omega} E[X|\mathcal{G}] dP = \int_{\Omega} X dP = E[X])$

- ii) If $X \ge 0$ then $E[X|\mathcal{G}] \ge 0$ a.s.
 - To see this, observe that $\int_G E[X|\mathcal{G}]dP = \int_G XdP \ge 0 \quad \forall G \in \mathcal{G}$.
 - Let $\tilde{\mathcal{G}}=\{\omega: \mathsf{E}[\mathsf{X}|\mathcal{G}]<-1/n\}$ for some $n\geq 1$. Then $\tilde{\mathcal{G}}\in\mathcal{G}$.

$$0 \le \int_{\tilde{G}} X dP = \int_{\tilde{G}} E[X|\mathcal{G}] dP \le -\frac{1}{n} P(\tilde{G})$$

- This implies $P(\tilde{G}) = 0$.
- $\Rightarrow P[E[X|\mathcal{G}] < 0] = P[\bigcup_{n=1}^{\infty} \{E[X|\mathcal{G}] < -1/n\}] = 0.$

Linearity of Conditional Expectation

iii)
$$E[aX + bY|\mathcal{G}] = aE[X|\mathcal{G}] + bE[Y|\mathcal{G}].$$

Proof.

Let $Z = aE[X|\mathcal{G}] + bE[Y|\mathcal{G}]$. Z is \mathcal{G} -measurable. For any $G \in \mathcal{G}$:

$$\int_{G} Z dP = \int_{G} (aE[X|\mathcal{G}] + bE[Y|\mathcal{G}]) dP$$

$$= a \int_{G} E[X|\mathcal{G}]dP + b \int_{G} E[Y|\mathcal{G}]dP$$

$$= a \int_{G} X dP + b \int_{G} Y dP = \int_{G} (aX + bY) dP$$

By uniqueness, $Z = E[aX + bY|\mathcal{G}]$.

Measurability of functions of rv

- Let X be \mathcal{F} -measurable and f is a continuous fn. Then f(X) is \mathcal{F} -msrble. Since for an open set O, $A = \{x : f(x) \in O\}$ is an open set, and $\{\omega : X(\omega) \in A\}$ is in \mathcal{F} .
- ② $\sup_n X_n$ is measurable when X_1, X_2, \ldots are. Since for every x, $\{\omega : \sup_n X_n(\omega) \le x\} = \bigcap_n \{\omega : X_n(\omega) \le x\} \in \mathcal{F}$.
- **3** Similarly, $\inf_n X_n$ is measurable.
- $\limsup_n X_n = \inf_m \sup_{n \ge m} X_n$ always exists and is measurable when X_1, X_2, \ldots are.
- **5** Similarly for $\liminf_n X_n = \sup_m \inf_{n \ge m} X_n$.
- **10** When both are equal, we define that as limit of $\{X_n\}_{n\geq 1}$.

Conditional Monotone Convergence Thm

• Result: Let $X_n \geq 0 \quad \forall n \geq 1, X_1 \leq X_2 \leq \dots, X_n \to X$. Then, $E[X_n | \mathcal{G}] \uparrow E[X | \mathcal{G}] \text{ a.s.}$

- Proof: $0 \le X_1 \le X_2 \le X_3 \le \dots \Rightarrow 0 \le E[X_1|\mathcal{G}] \le E[X_2|\mathcal{G}] \le \dots$
- Let $E[X_n|\mathcal{G}] \uparrow Y$ (Y: some \mathcal{G} -msrble rv) where $Y = \sup_n E[X_n|\mathcal{G}]$.
- Then $\int_G E[X_n|\mathcal{G}]dP = \int_G X_n dP \uparrow \int_G X dP$
- $\Rightarrow \int_G E[X_n|\mathcal{G}]dP \uparrow \int_G YdP = \int_G XdP$
- By uniqueness, it follows that $Y = E[X|\mathcal{G}]$.
- Therefore, $E[X_n|\mathcal{G}] \uparrow E[X|\mathcal{G}]$.

Conditional Dominated Convergence Theorem

Recall DCT

If $X_n : n \ge 1$ be a sequence of r.v's such that

$$\forall \omega \in \Omega, \forall n \geq 1 \quad |X_n(\omega)| \leq Y(\omega), E[Y] < \infty$$

, then $X_n(\omega) \to X(\omega)$ as $n \to \infty$ implies $E[X_n] \to E[X]$ as $n \to \infty$.

Theorem (Conditional DCT)

If $\forall n \geq 1, \omega \in \Omega \quad |X_n(\omega)| \leq Y(\omega), E[Y] < \infty$, then $X_n \to X$ as $n \to \infty$ implies

$$E[X_n|\mathcal{G}] \to E[X|\mathcal{G}]$$

as $n \to \infty$, a.s.