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Example: Convergence in Prob ⇏ a.s. Convergence

Example (where convergence in prob ⇏ a.s. convergence)

Consider a circle with unit circumference.

Let C0 = 0,

Cn = (Cn−1 + 1/n) mod 1

Ω = [0, 1]

Define Xn(ω) := 1[Cn−1,Cn ]

∴ P [Xn = 1] =
1

n
, ∀n ≥ 1

∴ P [|Xn| > ϵ] = P [Xn = 1] =
1

n

Taking limit n → ∞ on both sides, we get:
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Example: Convergence in Prob ⇏ a.s. Convergence (Cont.)

Example (continued)

P [|Xn| > ϵ] → 0 as n → ∞

⇒ Xn
P−→ 0

On the other hand, each point will be hit infinitely often. So

P({ω : Xn(ω) = 1 infinitely often}) = 1

⇒ Xn ̸ a.s.−→ 0.
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Continuity of Probability Measures

if An ↑ A, let limn→∞ An =
⋃∞

n=1 An. [thus limit of an increasing
sequence of sets is their union.]

⇒ P(An) ↑ P(
∞⋃

n=1

An) [Continuity of prob msr]

Alternatively, as n → ∞ for {Bn}n≥1 where Bn ↓ B, we have
limBn ↓ ⋂∞

n=1 Bn.

⇒ P(Bn) ↓ P(
∞⋂

n=1

Bn) as n → ∞.
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Proof of Continuity of Probability Measures

Construct Cn’s from An’s: Cn = An \ An−1.

By construction,
⋃n

i=1 Ai =
⋃n

i=1 Ci and Ci ’s are disjoint.

∴ P(
n⋃

i=1

Ci ) =
n

∑
i=1

P(Ci )

=
n

∑
i=1

[P(Ai )− P(Ai−1)] = P(An)

Also, P(
⋃∞

i=1 Ci ) = ∑∞
i=1 P(Ci ) = limn ∑n

i=1 P(Ci ) = limn P(An).

⇒ P(An) ↑ P(
⋃∞

i=1 Ci ) = P(
⋃∞

i=1 Ai ).
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To see that Xn
a.s.−→ X implies that Xn

prob−−→ X recall that

∞⋂
m=1

∞⋃
N=1

⋂
n≥N

{ω : |Xn(ω)− X (ω)| < 1

m
} = {ω : Xn(ω) → X (ω)}

so that a.s. convergence implies

P

(
∞⋃

N=1

⋂
n≥N

{ω : |Xn(ω)− X (ω)| < 1

m
}
)

= 1

⇒ ∀ϵ > 0, P

(
∞⋃

N=1

⋂
n≥N

{ω : |Xn(ω)− X (ω)| ≤ ϵ}
)

= 1

⇒ P

(
∞⋂

N=1

∞⋃
n=N

{ω : |Xn(ω)− X (ω)| > ϵ}
)

= 0
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Let BN =
⋃∞

n=N{ω : |Xn(ω)− X (ω)| > ϵ}. From continuiy, it follows
that

lim
N→∞

P(BN) = 0 (1)

Now, Xn
P−→ X if

lim
n→∞

P({ω : |Xn(ω)− X (ω)| > ϵ}) = 0

Since,

{ω : |Xn(ω)− X (ω)| > ϵ} ⊂
∞⋃

k=n

{ω : |Xk(ω)− X (ω)| > ϵ}

Convergence in probability follows from (1).
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Borel-Cantelli Lemma I

A sequence of sets {An} occurring infinitely often corresponds to

{An, i .o.} := lim supAn := ∩m ∪n≥m An.

Borel Cantelli Lemma 1: If

∑
n

P(An) < ∞,

then P(An, i .o.) = 0.

Proof follows as for all m,

P(An, i .o.) ≤ P(∪n≥mAn) ≤
∞

∑
n=m

P(An).
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Other Types of Convergence I

Lp convergence. (p ≥ 1) Lp-space: Lp(Ω,F ,P). All rvs in (Ω,F ,P)
are s.t. E |X |p < ∞.

Xn
Lp−→ X if E |Xn − X |p → 0

Norm in Lp space: ||X ||p = (E (|X |p))1/p.

Convergence in Distribution Xn
D−→ X if

Fn(x) → F (x) continuity pts. of F.

That is, if P(Xn ≤ x) → P(X ≤ x) ∀ continuity pts. of F.

Equivalently, convergence in distribution if E [f (Xn)] → E [f (X )] ∀f that
are bounded and continuous real-valued functions.
Useful when discussing random elements (instead of rv) taking values in
general spaces
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Relationships Between Convergence Types

L2 convergence ⇒ convergence in probability.

L2 Convergence does not imply a.s. convergence.

a.s. convergence implies convergence in probability (not vice-versa).

Example (where Xn
a.s.−−→ X , but Xn ̸

Lp−→ X )

Ω = [0, 1],Xn(ω) = n if ω ∈ [0, 1/n], = 0 otherwise. It was shown earlier

that Xn
a.s.−→ 0. However, E |Xn| = 1 ∀n.

⇒ Xn ̸ L1−→ (X = 0).

The result can be extended to Lp-space by setting Xn(ω) = n1/p if
ω ∈ [0, 1/n]; 0 otherwise.
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Example (where Xn
L1−→ X & Xn ̸

a.s.−−→ X )

Consider as before the points on a unit circumference circle. C0 = 0,

Cn = (Cn−1 + 1/n) mod 1

Ω = [0, 1]

Xn = 1[Cn−1,Cn ] ⇒ Xn = 1 w.p. 1/n,= 0 w.p. 1− 1/n.

E |Xn| = 1
n ⇒ limn→∞ E |Xn| = 0 ⇒ Xn

L1−→ (X = 0). However,

Xn ̸ a.s.−→ (X = 0).
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Law of Large Numbers (WLLN) I

WLLN Let X1,X2, . . . ,Xn are iid rvs with mean µ and variance σ2 (finite).
Then

P

[∣∣∣∣Snn − µ

∣∣∣∣ > ϵ

]
→ 0 as n → ∞, where Sn =

n

∑
i=1

Xi .

σ2 = Var(X ) = E [(X − E [X ])2] = E [X 2]− (E [X ])2
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Proof of WLLN

Markov’s inequality states: If X ≥ 0, then P(X ≥ a) ≤ E [X ]
a .

Why?

E [X ] =
∫ a

0
x dFX (x) +

∫ ∞

a
x dFX (x)

⇒ E [X ] ≥
∫ ∞

a
a dFX (x) = aP(X ≥ a).

Now,

P(|X − µ| > a) = P(|X − µ|2 ≥ a2) ≤ Var(X )

a2
(Chebyshev’s)

∴ P

(∣∣∣∣Snn − µ

∣∣∣∣ > ϵ

)
≤ Var(Sn/n)

ϵ2
=

σ2

nϵ2

Hence, LHS → 0 as n → ∞.
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Strong LLN

We’ll show Sn
n

a.s.−→ µ whenever E [X 4
i ] < ∞. (A relaxed version of

SLLN)

WLOG, lets assume µ = 0. [Shift of origin] & E [X 4
i ] ≤ K ∀i .

Then

E [S4
n ] = E

( n

∑
i=1

Xi

)4
 = nE [X 4

i ] + 3n(n− 1)(E [X 2
i ])

2

(All terms having E [Xi ] equal zero)

We also know (E [X 2
i ])

2 ≤ E [X 4
i ] (by Jensen’s inequality).

⇒ E [S4
n ] ≤ nK + 3n(n− 1)K

= nK + 3n2K − 3nK ≤ 3n2K
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Proof of SLLN I

∴ E

[(
Sn
n

)4
]
≤ 3K

n2

∴ ∑
n

E

[(
Sn
n

)4
]
≤ ∑

n

3K

n2
< ∞

⇒ ∑
n

(
Sn
n

)4

< ∞ a.s. [If E [Z ] < ∞ for Z ≥ 0, then Z < ∞ a.s.]

⇒ Sn
n

→ 0 a.s.
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Central Limit Theorem

Central Limit Theorem If X1,X2, . . . ,Xn are iid rvs with mean µ and
finite variance σ2, then (with Sn = ∑n

i=1 Xi )

√
n

σ

(
Sn
n

− µ

)
D−→ N(0, 1)

In other words,

Sn
n

≈ µ +
σ√
n
Z where Z ∼ N(0, 1)
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Proof of Central Limit Theorem

Consider moment-generating and characteristic fns. of rv X.

MGF: MX (t) = E [etX ]

Char GF: ϕX (t) = E [e itX ] (i :
√
−1)

Claim (Important result)

Let {ϕn}n≥1 be the sequence of CGFs for rvs X1, . . . ,Xn, . . . . Then if
ϕn(t) → ϕ(t), for all t, as n → ∞ and ϕ(t) is continuous at 0, then the

associated distribution functions Fn
D−→ F for some distribution function F .

Characteristic fns. uniquely determine the distribution of rvs.
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Proof of CLT (Characteristic Functions)

If we can show ϕ Sn−nµ

σ
√
n

(t) → ϕ(t) where ϕ is CGF for N(0, 1), we’re

done.

Let X ∼ N(0, 1). Then ϕX (t) equals

∫ ∞

−∞

1√
2π

e itxe−x2/2dx =
∫ ∞

−∞

1√
2π

e−
1
2 (x

2−2itx−t2)−t2/2dx

And this equals

= e−t2/2
∫ ∞

−∞

1√
2π

e−
(x−it)2

2 dx = e−t2/2
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Similarly,

ϕn(t) := E

[
exp

(
i
Sn − nµ

σ
√
n

t

)]
= E

[
exp

(
i

n

∑
j=1

Xj − µ

σ
√
n

t

)]

=

{
E

[
exp

(
i
X − µ

σ
√
n
t

)]}n

=

{
ϕX−µ

(
t

σ
√
n

)}n

Now, trivially ϕ′
X (0) = iE [X ], ϕ′′

X (0) = −E [X 2], . . .

Stochastic Calculus: Probability notes - Set 2 19 / 41



Proof of CLT (Taylor Expansion)

Applying Taylor series, we get ϕX−µ

(
t

σ
√
n

)
= 1+ iE [X − µ]

(
t

σ
√
n

)
+

1

2
E [(X − µ)2]

(
it

σ
√
n

)2

+ o

(
t2

σ2n

)
1− t2

2n
+ o

(
1

n

)

⇒ lim
n→∞

{
ϕX−µ

(
t

σ
√
n

)}n

= lim
n→∞

(
1− t2

2n
+ o

(
1

n

))n

= e−t2/2

Thus we have shown that
Sn−nµ

σ
√
n

D−→ N(0, 1).
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Fubini’s Theorem

In the simplest setting g(x , y) is a function on R2. Then, by Fubini,∫
(x ,y )∈R2

g(x , y)dxdy =
∫
x∈R

(∫
y∈R

g(x , y)dy

)
dx

when g(x , y) ≥ 0 always or when
∫
(x ,y )∈R2 |g(x , y)|dxdy < ∞.

This generalizes to space (Ω1,Ω2), σ − algebra on this space
F1 ×F2, and associated product measure
π(A1 × A2) = µ1(A1)× µ2(A2) so that∫

(x ,y )∈Ω×Ω2

g(x , y)π(dx × dy)

equals ∫
x∈Ω1

(∫
y∈Ω2

g(x , y)µ2(dy)

)
µ1(dx)
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Multi-variate Gaussian Distribution

Let V = (V1,V2, . . . ,Vd )
T be an Rd rv. µ = (µ1, µ2, . . . , µd )

T mean
vector.

Σ =


σ11 σ12 . . . σ1d
σ21 σ22 . . . σ2d
...

...
. . .

...
σd1 σd2 . . . σdd

 where ∀i ≥ 1, σii = σ2
i , ∀i ̸= j , σij = σiσjρij

Then the MVG density is given as:

f (V ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(V − µ)T Σ−1(V − µ)

)
, ∀V ∈ Rd
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Bivariate Gaussian Distribution

The joint pdf f (v1, v2) equals

1

2πσ1σ2
√

1− ρ2
× e

(
− 1

2(1−ρ2)

[(
v1−µ1

σ1

)2
+
(

v2−µ2
σ2

)2
−2ρ

(v1−µ1)(v2−µ2)
σ1σ2

])

∀v ∈ R2.

If ρ = 0, f (v1, v2) = fV1(v1) · fV2(v2).

⇒ V1 and V2 are independent.
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Example: Uncorrelated but Dependent Gaussian Variables

Let X ,Y ∼ N(0, 1). Can we have X,Y to be uncorrelated, but still
dependent?

Example

Let X ∼ N(0, 1). Let Y = ZX, where Z = ±1 w.p. 1/2, ind. of X .

P [Y ≤ x ] = P [ZX ≤ x ] = P [Z = 1,X ≤ x ] + P [Z = −1,X ≥ −x ]

=
1

2
P [X ≤ x ] +

1

2
P [X ≥ −x ]

= P [X ≤ x ]. (∵ Normal dist is symmetric.)

⇒ Y ∼ N(0, 1).

Now, E [XY ] = E [X · ZX ] = E [ZX 2] = 0.

Also E [X ]E [Y ] = 0, ⇒ ρXY = 0.

However, Y 2 = Z 2X 2 = X 2 ⇒ X&Y are not independent.
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In this example, joint density of X and Y does not exist. Visually, (Y ,X )
will always lie on this straight line hence no mass attained.

X

Y

Stochastic Calculus: Probability notes - Set 2 25 / 41



Multivariate Gaussian Distribution

Let θ = (θ1, θ2, . . . , θd )
T ∈ Rd .

Then ϕV (θ) = E [e iθ
TV ]

= E [e i(θ1V1+θ2V2+···+θdVd )]

= e iθ
T µ− 1

2 θT Σθ (through direct calculation)

⇒ V ∼ MVG (µ,Σ) iff for θ ∈ ℜd , θTV ∼ UVG (θT µ, θT Σθ).

If V ∼ MVG (µ,Σ), then AV ∼ MVG (Aµ,AΣAT ).
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Formal definition of independence

Random variables X&Y are said to be independent if:

P(A∩ B) = P(A)P(B), ∀A ∈ σ(X ),B ∈ σ(Y ).

X&Y are independent iff

E [G (X )H(Y )] = E [G (X )]E [H(Y )].

for all Borel measurable G and H (assuming all expectations are well
defined)

Let fX ,Y (x , y) be the joint density of X&Y . Then the marginal
distribution of X is:

fX (x) =
∫

R
fX ,Y (x , y)dy

Similarly, fY (y).
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Independence and Joint Density I

Claim (Show)

X&Y are independent iff fX ,Y (x , y) = fX (x)fY (y) ∀ all (x , y) almost
everywhere.

To see this, first assume X&Y are independent. Then, for
A ∈ σ(X ),B ∈ σ(Y ),

P(X ∈ A,Y ∈ B) = P(X ∈ A) · P(Y ∈ B)

⇒
∫
A

∫
B
fX ,Y (x , y)dxdy =

∫
A
fX (x)dx

∫
B
fY (y)dy

Let A = (−∞, u] and B = (−∞, v ].

⇒
∫ u

−∞

∫ v

−∞
fX ,Y (x , y)dydx =

∫ u

−∞
fX (x)dx

∫ v

−∞
fY (y)dy
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Independence and Joint Density II

Differentiating both sides w.r.t. u and v gives us:

fX ,Y (u, v) = fX (u) · fY (v).

For other direction, fX ,Y (x , y) = fX (x)fY (y) through Fubini easily implies

P [X ∈ A,Y ∈ B ] = P [X ∈ A]P [Y ∈ B ]
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Conditional Expectations (Discrete Case)

Conditional Expectations Let X&Y be 2 rv’s assuming values
X = {x1, . . . , xk}; Y = {y1, . . . , ym}. Then,

P [X = xi |Y = yj ] =
P [X = xi ,Y = yj ]

P [Y = yj ]

E [X |Y = yj ] = ∑
i

xi · P [X = xi |Y = yj ] = ∑
i

xi
P [X = xi ,Y = yj ]

P [Y = yj ]

Partition Ω into m-many parts:

y1 y2 . . . ym
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Define Z (ω) := E [X |Y = yj ] if Y (ω) = yj . Then Z = E [X |Y ]
becomes an rv assuming m values and is σ(Y )-measurable.

For A ∈ Y , it follows that

∑
yj∈A

P [Y = yj ] · E [X |Y = yj ] = ∑
(xi ,yj )∈X×A

xi · P [X = xi ,Y = yj ]

In other words ∫
A
E [X |Y ]dP =

∫
A
XdP

where A is defined on X ×Y .
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Definition of Conditional Expectation w.r.t. σ-algebra

1 Conditional expectation of an r.v. X defined on (Ω,F ,P) with
E |X | < ∞ w.r.t. σ-algebra G ⊂ F (Can be σ(Y ) or any generic
σ-algebra) is defined as rv E [X |G] such that:

i) E [X |G] is G-measurable.

ii)
∫
G E [X |G]dP =

∫
G XdP ∀G ∈ G.
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E [X |G] exists, and is unique.

Assume that Y1 and Y2 are two versions of E [X |G].

⇒
∫
G
Y1dP =

∫
G
XdP =

∫
G
Y2dP, ∀G ∈ G

⇒
∫
G
(Y1 − Y2)dP = 0, ∀G ∈ G

If Y1,Y2 are msrble, so are Y1 ± Y2,Y1 · Y2,Y1/Y2

Let G = {ω : Y1(ω)− Y2(ω) > 0} ∈ G.

⇒
∫
G
(Y1 − Y2)dP = 0

⇒ P(Y1 − Y2 ≤ 0) = 1. Symmetrically, P(Y1 − Y2 ≥ 0) = 1.

Hence, Y1 = Y2 a.s.
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Existence of Conditional Expectation

If
∫
X≥0 XdP = 0 ⇒ P [X > 0] = 0.

Because if not, ∃m > 0 s.t. P(X > 1/m) > 0.

⇒
∫
X≥0 XdP ≥ 1

mP(X > 1/m) > 0.

To prove existence of conditional expectation, we use the
Radon-Nikodym Theorem.

Let ν, µ be two measures defined on (Ω,F ) s.t. ν ≪ µ. That is ν is
absolutely continuous w.r.t. µ. This means that if
µ(A) = 0 ⇒ ν(A) = 0. Or ν(A) > 0 ⇒ µ(A) > 0.

Stochastic Calculus: Probability notes - Set 2 34 / 41



RN Thm straightforward when (Ω,F ) is a discrete space: We have
the representation ν(A) = ∑ω∈A f (ω) · µ(ω) =

∫
A f dµ, where

f (ω) = ν(ω)
µ(ω)

will be well-defined ratio because of the fact that ν ≪ µ.

RN Thm extends this to general spaces: If ν ≪ µ then ∃ a density
function f : Ω → R which is F -measurable and

ν(A) =
∫
A
fdµ.

RV f is known as the RN derivative and denoted as: f = dν
dµ (ω).

Assume X ≥ 0. Define ν(G ) =
∫
G XdP. Then

P(G ) = 0 ⇒ ν(G ) = 0 ⇒ ν ≪ P.

By RN theorem, ∃ an G-measurable Y s.t., ν(G ) =
∫
G YdP.
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Geometric view on conditional expectation

Consider X ∈ L2(Ω,F ,P). G ⊂ F

L2(Ω,G,P)

X

Y

L2(Ω,G,P) is a subspace of L2(Ω,F ,P).

Y is a projection of X on the subspace.

It minimizes E [(X −W )2] for all W ∈ G.

Hence E [(X − Y )Z ] = 0 ∀Z ∈ G.

Thus, E [X1G ] = E [Y 1G ] ∀G ∈ G. So,
Y = E [X |G].
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Properties of Conditional Expectation

i) E [E [X |G]] = E [X ]. (∵
∫

Ω E [X |G]dP =
∫

Ω XdP = E [X ])

ii) If X ≥ 0 then E [X |G] ≥ 0 a.s.

To see this, observe that
∫
G E [X |G]dP =

∫
G XdP ≥ 0 ∀G ∈ G.

Let G̃ = {ω : E [X |G] < −1/n} for some n ≥ 1. Then G̃ ∈ G.

0 ≤
∫
G̃
XdP =

∫
G̃
E [X |G]dP ≤ −1

n
P(G̃ )

This implies P(G̃ ) = 0.

⇒ P [E [X |G] < 0] = P [∪∞
n=1{E [X |G] < −1/n}] = 0.
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Linearity of Conditional Expectation

iii) E [aX + bY |G] = aE [X |G] + bE [Y |G].

Proof.

Let Z = aE [X |G] + bE [Y |G]. Z is G-measurable. For any G ∈ G:∫
G
ZdP =

∫
G
(aE [X |G] + bE [Y |G])dP

= a
∫
G
E [X |G]dP + b

∫
G
E [Y |G]dP

= a
∫
G
XdP + b

∫
G
YdP =

∫
G
(aX + bY )dP

By uniqueness, Z = E [aX + bY |G].
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Measurability of functions of rv

1 Let X be F -measurable and f is a continuous fn. Then f (X ) is
F -msrble. Since for an open set O, A = {x : f (x) ∈ O} is an open
set, and {ω : X (ω) ∈ A} is in F .

2 supnXn is measurable when X1,X2, . . . are. Since for every x ,
{ω : supn Xn(ω) ≤ x} =

⋂
n{ω : Xn(ω) ≤ x} ∈ F .

3 Similarly, infn Xn is measurable.

4 lim supn Xn = infm supn≥m Xn always exists and is measurable when
X1,X2, . . . are.

5 Similarly for lim infn Xn = supm infn≥m Xn.

6 When both are equal, we define that as limit of {Xn}n≥1.
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Conditional Monotone Convergence Thm

Result: Let Xn ≥ 0 ∀n ≥ 1,X1 ≤ X2 ≤ . . . ,Xn → X . Then,

E [Xn|G] ↑ E [X |G] a.s.

Proof: 0 ≤ X1 ≤ X2 ≤ X3 ≤ . . . ⇒ 0 ≤ E [X1|G] ≤ E [X2|G] ≤ . . .

Let E [Xn|G] ↑ Y (Y: some G-msrble rv) where Y = supn E [Xn|G].

Then
∫
G E [Xn|G]dP =

∫
G XndP ↑

∫
G XdP

⇒
∫
G E [Xn|G]dP ↑

∫
G YdP =

∫
G XdP

By uniqueness, it follows that Y = E [X |G].

Therefore, E [Xn|G] ↑ E [X |G].
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Conditional Dominated Convergence Theorem

Recall DCT

If Xn : n ≥ 1 be a sequence of r.v’s such that

∀ω ∈ Ω, ∀n ≥ 1 |Xn(ω)| ≤ Y (ω),E [Y ] < ∞

, then Xn(ω) → X (ω) as n → ∞ implies E [Xn] → E [X ] as n → ∞.

Theorem (Conditional DCT)

If ∀n ≥ 1,ω ∈ Ω |Xn(ω)| ≤ Y (ω),E [Y ] < ∞, then Xn → X as n → ∞
implies

E [Xn|G] → E [X |G]

as n → ∞, a.s.
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