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Example: Convergence in Prob - a.s. Convergence

Example (where convergence in prob # a.s. convergence)

Consider a circle with unit circumference.

Let Co =0,

Ch=(Cho1+1/n) mod1
Q=10,1]

Define Xn(w) = H[Cn—lrcn]

L PX,=1] =

S| =

., Vn>1

~ PG| > €] = PXy = 1] = -

Taking limit n — oo on both sides, we get:
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Example: Convergence in Prob # a.s. Convergence (Cont.)

Example (continued)

P[|Xn| > €] =0 asn— oo
= X, Eo
On the other hand, each point will be hit infinitely often. So

P({w : X,(w) = 1 infinitely often}) =1

= X, 22 0.
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Continuity of Probability Measures

o if Ay T A, let limp_e0 Ap = Up—1 An. [thus limit of an increasing
sequence of sets is their union.]
oo

= P(An) 1t P(|J As) [Continuity of prob msr]

n=1

o Alternatively, as n — oo for {B,},>1 where B, | B, we have
lim By L N, By

[ee]

= P(B,) | P(ﬂ B,) asn— oo.

n=1
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Proof of Continuity of Probability Measures

e Construct C,'s from Ap's: C, = A, \ Ap—1.

@ By construction, U1 A; = U1 G and C;'s are disjoint.

P(L_HJ C,') = Zn: P(C,')

o Also, P(U2, G) =X, P(G) = limy X0y P(G;) = limp, P(Ap).

o = P(An) T P(U?il Ci) = 'D(U?ozl Ai)-
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.S. . . b
o To see that X, 2= X implies that X, P X recall that

(o"j U N 1Xle) = X(@)] < 2} = {0 Xolw) = X(w)}

1N=1n>N

so that a.s. convergence implies

P(G M {w: [Xnlw) = X(w)] < 1}) —1

N=1n>N m
= Ve >0, P(G N A{w ]X,,(w)—X(w)]<e}>:1
N=1n>N
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Let By = Unep{w : [ Xn(w) — X(w)| > €}. From continuiy, it follows
that

lim P(By) =0 (1)
N—o0
P\ .
Now, X, — X if
lim P({w : |Xp(w) —X(w)| >€}) =0
Since,

{w | Xp(w) — X(w)| > €} C G{w D Xk(w) — X(w)| > €}
k=n

Convergence in probability follows from (1).
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Borel-Cantelli Lemma |

@ A sequence of sets {A,} occurring infinitely often corresponds to
{Ap i.0.} :=limsup A, := N Upsm Ap.
o Borel Cantelli Lemma 1: If

Y P(A;) < oo,

n

then P(Ap,i.0.) =0.

@ Proof follows as for all m,

P(An,i.0.) < P(Up>mAn) Z
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Other Types of Convergence |

LP convergence. (p > 1) LP-space: LP(Q), F,P). All rvs in (Q, F, P)
are s.t. E|X|P < 0.

Xo 5 X if E[X,—X|P =0

Norm in LP space: ||X]|p, = (E(|X]|P))Y/P.

Convergence in Distribution X, 2 X if
Fn(x) — F(x) continuity pts. of F.

That is, if P(X, < x) = P(X < x) V continuity pts. of F.

Equivalently, convergence in distribution if E[f(X,)] — E[f(X)] Vf that
are bounded and continuous real-valued functions.
Useful when discussing random elements (instead of rv) taking values in
general spaces
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Relationships Between Convergence Types

@ L2 convergence = convergence in probability.
@ L2 Convergence does not imply a.s. convergence.

@ a.s. convergence implies convergence in probability (not vice-versa).

Example (where X, 223 X, but X, 7@0—> X)
Q =1[0,1], Xp(w) = n ifw € [0,1/n], = 0 otherwise. It was shown earlier
that X, =2 0. However, E|X,| =1 Vn.

= X, £ (X =0).

The result can be extended to LP-space by setting X,(w) = n/P if
w € [0,1/n]; 0 otherwise.
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Example (where X, =5 X & X, 255 X)

Consider as before the points on a unit circumference circle. Co = 0,

Ch=(Ch-1+1/n) mod1
Q=10,1]

Xp = I]'[Cn—lycn] =X, =1wp. 1/n,=0wp. 1—1/n.
E[Xp| = L = limp o0 E|Xn| = 0= X, =% (X = 0). However,

Xn 773 (X = 0).

_Stochastic Calculus: Probability notes - Set 2 11/41



Law of Large Numbers (WLLN) I

WLLN Let X3, Xa, ..., X, are iid rvs with mean y and variance o (finite).

Then
4

0? = Var(X) = E[(X — E[X])?] = E[X?] — (E[X])?

5 n
n"—‘u‘>e] —0 as n— oo, whereS,,zZX,-.

i=1

_Stochastic Calculus: Probability notes - Set 2 12 /41



Proof of WLLN

Markov’s inequality states: If X > 0, then P(X > a) < ElX].
Why?

E[X] :/OaxdFX(xH/jxdFX(x)

= E[X] > / adFx(x) = aP(X > a).

a

Now,

o

Hence, LHS — 0 as n — oo.
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Strong LLN

o We'll show % 225 1 whenever E[X}*] < co. (A relaxed version of
SLLN)

e WLOG, lets assume pu = 0. [Shift of origin] & E[X*] < K Vi.
@ Then

4
E[Sy] =E (2 x,-) = nE[X?] +3n(n—1)(E[X?])
i=1
(All terms having E[X;] equal zero)

e We also know (E[X?])? < E[X?] (by Jensen's inequality).

= E[S}] < nK+3n(n—1)K

= nK + 3n°K — 3nK < 3n’°K
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Proof of SLLN |

4
=Y Sn <oo as. [If E[Z] <oofor Z>0, then Z < o0 a.s.]
n

n

S
= 50 as.
n
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Central Limit Theorem

Central Limit Theorem If X1, X5, ..., X, are iid rvs with mean u and
finite variance 2, then (with S, = " ; X;)

\f <5n —y) L n(o,1)

In other words,
Sn Ao+ 7 where Z ~ N(0,1)
n n

7
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Proof of Central Limit Theorem

Consider moment-generating and characteristic fns. of rv X.

MGF: Mx(t) = E[e%X]

Char GF: ¢x(t) = E[e™] (i:+/—1)

Claim (Important result)

Let {¢n}n>1 be the sequence of CGFs for rvs Xy, ..., Xp,.... Then if
¢n(t) — ¢(t), for all t, as n — oo and ¢(t) is continuous at 0, then the

. . . D . .
associated distribution functions F, — F for some distribution function F.

@ Characteristic fns. uniquely determine the distribution of rvs.
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Proof of CLT (Characteristic Functions)

o If we can show ¢s, n: (t) — ¢(t) where ¢ is CGF for N(0,1), we're
NG

done.
o Let X ~ N(0,1). Then ¢x(t) equals

o0
2 1 102 o 2\ 42
ltxe X /2dX / e 5 (x*=2itx—t*)—t /2dX

© 1
—€
/—oo \/ﬁ —0c0 \/%

And this equals

oo Y it)2
= e_t2/2/ 1*6_< i = e /2
—o0 /27T
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Similarly,

Now, trivially ¢ (0) = iE[X], ¢%(0) = —E[X?], ...
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Proof of CLT (Taylor Expansion)

Applying Taylor series, we get PX—pu (ﬁ)

t

=il () et (7)o (G

t2 1
1—2,7+O<n>
= lim ¢X* L n:||m 1_L2+O E "
n—so0 " Oav/ﬁ n—vo0 2n n

—t2/2

=€

Sp—nu D
Thus we have shown that N N(0,1).

_Stochastic Calculus: Probability notes - Set 2

20 /41



Fubini's Theorem

@ In the simplest setting g(x, y) is a function on IR2. Then, by Fubini,
| sty = | ( / g<x,y>dy) dx
(x,y)eR? x€R veR
when g(x,y) > 0 always or when f(x,y)e]RZ lg(x, y)|dxdy < oo.
@ This generalizes to space (1, )), ¢ — algebra on this space
JF1 X F», and associated product measure

(A1 X Az) = pi1(A1) X p2(Az) so that

/ g(x, y)m(dx x dy)
(x,y)eQxQp

equals

Lo ([, goman) ma)
XGQl yEQz
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Multi-variate Gaussian Distribution

Let V = (V4, Va,..., Vy)T bean RY rv. p = (p1, g2, .., thg) " mean
vector.

011 012 ... O0O14d
021 022 ... O2q
. . ) . . .
Y= : : . : where VIZl,O’,’,’—O’;,VI#J,O’,’j—U’,’U’jP,’j
Od1 Od2 ... 0Odd

Then the MVG density is given as:

F(V) = Wexp (‘i(V—ﬂ)TZ_l(V—P‘)> . VVeR?
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Bivariate Gaussian Distribution

@ The joint pdf f(v, v2) equals

2 2
1 vi—i v\ 5 (vi—p)(va—pp)
1 % e< 2(1-p?) {( 71 ) +< [P ) 20 0102 D

21t01094/1 — p?

Vv € R2.
o Ifp=0, f(vi,va) = fy,(v1) - i, (v2).

e = V4 and V5, are independent.
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Example: Uncorrelated but Dependent Gaussian Variables

@ Let X, Y ~ N(0,1). Can we have X,Y to be uncorrelated, but still
dependent?

Let X ~ N(O,l). Let Y = ZX, where Z = &1 w.p. 1/2, ind. of X.
PIY <x|=P[ZX <x|=P[Z=1,X < x|+ P[Z=—1,X > —x]
- %P[X <+ %P[X > —x]
= P[X < x|. (. Normal dist is symmetric.)
= Y ~ N(0,1).
Now, E[XY] = E[X - ZX] = E[2X?] = 0.
Also E[X]E[Y] =0, = pxy = 0.

However, Y? = Z?2X? = X? = X&Y are not independent.
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In this example, joint density of X and Y does not exist. Visually, (Y, X)
will always lie on this straight line hence no mass attained.

Y
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Multivariate Gaussian Distribution
Let 0 = (01,02,...,04)7 € RY.
Then ¢y () = E[e® VY]

— E[ei(91 Vi+6> V2+---+9dVd)]

— /0" n—20720 (through direct calculation)
o =V ~MVGu,X)ifffor0 € R, 0TV ~ UVG(0T 1, 07%0).

o If V ~ MVG(, ), then AV ~ MVG(Au, AZAT).
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Formal definition of independence

@ Random variables X&Y are said to be independent if:
P(ANB) = P(A)P(B), YAco(X),Bea(Y).
@ X&Y are independent iff
E[G(X)H(Y)] = E[G(X)]E[H(Y)].

for all Borel measurable G and H (assuming all expectations are well
defined)

o Let fx y(x, y) be the joint density of X&Y. Then the marginal
distribution of X is:

fx (x) :/]fo,Y(X,y)dy

Similarly, fy (y).
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Independence and Joint Density |

X&Y are independent iff fx y(x,y) = fx(x)fy(y) ¥V all (x,y) almost
everywhere.

To see this, first assume X&Y are independent. Then, for
Aco(X),Bea(Y),

P(XEAYeB)=P(XeA) P(YeB)
:>/A/foly(x,y)dxdyz/Afx(X)dX/B fy (y)dy

Let A= (—oo,u] and B = (—oo0, v].

= /:;O/:;o fx.y(x,y)dydx = /l;o fx(X)dX/v fy (y)dy

—00
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Independence and Joint Density |l

Differentiating both sides w.r.t. u and v gives us:

fx.y(uv)=fx(u)- fy(v).

For other direction, fx y(x,y) = fx(x)fy(y) through Fubini easily implies

P[X € A Y € B] = P|X € A|P|Y € B]
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Conditional Expectations (Discrete Case)

Conditional Expectations Let X&Y be 2 rv's assuming values
X={x,....xx}; Y={v1,.-.,¥m}. Then,

PX=x,Y =y
PIX =x|Y =yj| = [ /]

PIY =yl
- Xll Y
EX|Y =y] = Zx, X=x|Y=y= ZX, i
= Y]
Partition () into m-many parts:
Yi|y2 Ym
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o Define Z(w) := E[X|Y = yj] if Y(w) = yj. Then Z = E[X]|Y]
becomes an rv assuming m values and is (Y')-measurable.
@ For A€ ), it follows that

Y PIY =yl EX[Y=yl= ), x PX=xY=y]
yj€A (xi,y;)EX XA

@ In other words
/ﬂwwwz/xw
A A

where A is defined on X x V.
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Definition of Conditional Expectation w.r.t. c-algebra

@ Conditional expectation of an r.v. X defined on (Q, F, P) with
E|X| < co w.r.t. g-algebra G C F (Can be o(Y) or any generic
o-algebra) is defined as rv E[X|G] such that:

i) E[X|G] is G-measurable.

i) [ E[X|G]dP = [.XdP YGeG.

_Stochastic Calculus: Probability notes - Set 2 32/41



E[X|G] exists, and is unique.

@ Assume that Y; and Y5 are two versions of E[X|G].
:»/ YldP:/ XdP:/ Y2dP, VG eG
G G G
:>/(Y1—Y2)dP:0, VG eg
G

o If Y1,Y5 are msrble, soare Y1 £ Y5, Y1 Y5, Yi/Y>
o Let G ={w: Yi(w)— Yo(w) >0} € G.

:>/(Y1—Y2)dP:O
G

= P(Y1— Y2 <0) = 1. Symmetrically, P(Y1 — Y2 > 0) = 1.
@ Hence, Y1 = Y5 ass.
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Existence of Conditional Expectation

If [xo0XdP =0 = P[X > 0] =0.

Because if not, 3m > 0s.t. P(X > 1/m) > 0.

= [xooXdP > £P(X >1/m) > 0.

@ To prove existence of conditional expectation, we use the
Radon-Nikodym Theorem.

o Let v, u be two measures defined on (Q), F) s.t. v < p. Thatis v is
absolutely continuous w.r.t. . This means that if
u(A)=0=v(A)=0. Orv(A) > 0= u(A) >0.
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@ RN Thm straightforward when (Q), F) is a discrete space: We have
the representation v(A) = Y ea f(w) - p(w) = [, f dy, where

flw) = ;EZ% will be well-defined ratio because of the fact that v < pu.

@ RN Thm extends this to general spaces: If v < u then 3 a density
function f : QO — R which is F-measurable and

V(A) = /A fdy.

RV f is known as the RN derivative and denoted as: f = S—Z(w).
o Assume X > 0. Define v(G) = [, XdP. Then
P(G)=0=v(G)=0=v << P.

By RN theorem, 3 an G-measurable Y s.t., v(G) = fG YdP.
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Geometric view on conditional expectation

Consider X € L2(Q), F,P). G C F

L2(Q), G, P) is a subspace of L2(Q), F, P).

. x

Y is a projection of X on the subspace.

L2(0, G, P)

It minimizes E[(X — W)?] for all W € G.

Hence E[(X —Y)Z] =0 VZeg.

Thus, E[X1¢] = E[Y1g] VG €G. So,
Y = E[X|G].
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Properties of Conditional Expectation

E[EIX|G]] = (- Jo EX|G]dP = [, XdP = E[X])

ii) If X >0 then E[X|G] >0 a.s.

To see this, observe that [ E[X|G]dP = [ XdP >0 VG € g.

Let G = {w: E[X|G] < —1/n} for some n > 1. Then G € G.
O</XdP / IX|G] dP<——P(G)

This implies P(G) =

PIE[X|G] < 0] = PIUR{E[X|G] < =1/n}] = 0.
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Linearity of Conditional Expectation

i) E[aX + bY|G] = aE[X|G] + bE[Y|G].

Let Z = aE[X|G] + bE[Y|G]. Z is G-measurable. For any G € G:

/GZdP:/G(aE[Xyg]erE[ng])dP
:a/G E[X|g]dP+b/G E[Y|G]dP

:a/ XdP+b/ YdP:/(aX+bY)dP
G G G

By uniqueness, Z = E[aX + bY|G]. O
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Measurability of functions of rv
@ Let X be F-measurable and f is a continuous fn. Then £(X) is
JF-msrble. Since for an open set O, A= {x: f(x) € O} is an open
set, and {w : X(w) € A} isin F.

@ sup,X, is measurable when X7, Xo, ... are. Since for every x,
{w :sup, Xp(w) < x} = Np{w: Xn(w) < x} € F.

© Similarly, inf, X,, is measurable.

Q limsup, X, = inf,,; sup,~,, X, always exists and is measurable when
X1, X5, ... are.

@ Similarly for liminf, X, = sup,, inf,>m X.

@ When both are equal, we define that as limit of {X,},>1.
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Conditional Monotone Convergence Thm

@ Result: Let X, >0 Vn>1, X1 <X <...,X,— X. Then,

E[Xa|G] 1 E[X]|G] a.s.

Proof: 0 < X1 < X < X3<... =0< E[X1|Q] < E[X2|Q] <

Let E[X,|G] T Y (Y: some G-msrble rv) where Y = sup, E[X,|G].

o Then [ E[Xs|G]dP = [, X,dP 1 [ XdP

=>fG [Xn|G] dPTfG YdP = fGXdP
o By uniqueness, it follows that Y = E[X|G].

o Therefore, E[X,|G] 1 E[X]|G].
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Conditional Dominated Convergence Theorem

Recall DCT

If X, :n>1 be a sequence of r.v's such that
Vw e O,Vn>1 |X,(w)| < Y(w) E[Y] <o

, then X, (w) = X(w) as n — oo implies E[X,] — E[X] as n — oo.

Theorem (Conditional DCT)

IfVn>1l,weQ |Xp(w) <Y(w) E[Y] < oo, then X, — X as n — o0
implies
E[Xa|G] — E[X[]]

as n— 0o, a.s.
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