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Brownian Motion: Definition

Definition
A stochastic process {B(t) : 0 ≤ t ≤ T} on (Ω,F , {Ft},P) is
defined as a Brownian Motion if it satisfies the following:

1. B0 = 0

2. B(t4)− B(t3) is independent of B(t2)− B(t1) for all
0 ≤ t1 < t2 < t3 < t4 ≤ T

3. B(t + s)− B(s) ∼ N(0, t) for all s, t ≥ 0

4. B(t, ω) is a continuous function of t for every ω



Construction of BM: Simple Random Walk

▶ Let X1,X2, . . . ,Xn be i.i.d, Xi = ±1 w.p. 1/2.

▶ Define Sn =
∑n

i=1 Xi (Which is a simple random walk).

▶ Easy to see that {Sn : n ≥ 1} is a martingale and is a Markov
process.



Markov Property in discrete settings
For {Sn : n ≥ 1} to be Markov, need to show that

P[Sn+1 = sn+1|S0 = s0, S1 = s1, . . . ,Sn = sn] = P[Sn+1 = sn+1|Sn = sn]

We have

P[Sn+1 = sn+1|S0 = s0, S1 = s1, . . . ,Sn = sn]

= P[Sn + Xn+1 = sn+1|S0 = s0, S1 = s1, . . . ,Sn = sn]

= P[Xn+1 = sn+1 − sn|S0 = s0, . . . ,Sn = sn]

= P[Xn+1 = sn+1 − sn] (since Xi ’s are independent)

= P[Sn+1 = sn+1|Sn = sn]



Scaled Random Walk: Definition

▶ Define another process {Bn(t) : 0 ≤ t ≤ T} such that:

Bn(t) =
Snt√
n

when t is a multiple of n−1, and a linear interpolation at other
points.

▶ Time is scaled down by n and space by
√
n.

{Bn(t) : 0 ≤ t ≤ T} is constructed

▶ We argue that {Bn(t) : 0 ≤ t ≤ T} → {B(t) : 0 ≤ t ≤ T}.
(This is known as the weak convergence of stochastic
processes).



Scaled Random Walk: Properties (1/2)

1.
Bn(0) =

S0√
n
= 0 (By defn. of r.w.) (1)

2. Let 0 < t1 < t2 < t3 < t4 < T . Then, roughly speaking

Bn(t4)− Bn(t3) =
Snt4 − Snt3√

n
=

∑nt4
i=nt3+1 Xi√

n

Bn(t2)− Bn(t1) =
Snt2 − Snt1√

n
=

∑nt2
i=nt1+1 Xi√

n

Since Xi ’s are independent, asymptotically, for large n,
Bn(t4)− Bn(t3) ⊥⊥ Bn(t2)− Bn(t1).



Scaled Random Walk: Properties (2/2)

3. Bn(t + s)− Bn(s) =
Sn(t+s)−Sns√

n
=

∑rn(t+s)
i=ns+1 Xi√

n

= in dist
√
t

(∑nt
1 Xi√
nt

)
d−→ N(0, t) (By Central Limit Theorem)

4. It can be verified that the limiting process B(t, ω) is
continuous in t for each ω. In fact, it can be shown that it is
continuous everywhere, but differentiable nowhere.



Brownian Motion is a Martingale

For t, s ≥ 0:

E[Bt+s |Ft ] = E[Bt+s − Bt + Bt |Ft ]

By property (2) of BM, Bt+s − Bt ⊥⊥ Ft .

=⇒ E[Bt+s − Bt |Ft ] = E[Bt+s − Bt ]

=⇒ E[Bt+s |Ft ] = E[Bt+s − Bt ] + Bt = 0 + Bt = Bt

Also, it can be verified that E[|Bt |] < ∞ [since its mean of |Z |,
where Z ∼ N(0, 1)].



Stopping Time: Definition

Let τ = inf{t : Bt = a or Bt = −b}, for a, b > 0.

y

x
(0, 0)

a

b

T

Let’s define the stopped process Yt = Bt∧τ .



Application 1: Exit Probability

Calculating the Probability

Since Bt∧τ is a martingale, E[Bt∧τ ] = E[B0] = 0 for all t.

=⇒ E[Bτ ] = 0

Now, we expand the expectation:

E[Bτ ] = aP[Bτ = a] + (−b)P[Bτ = −b] = 0

▶ We know P[Bτ = a] + P[Bτ = −b] = 1.
▶ Substituting gives: aP[Bτ = a]− b(1 − P[Bτ = a]) = 0.
▶ Solving for the probability:

(a+ b)P[Bτ = a] = b =⇒ P[Bτ = a] =
b

a+ b



Another Martingale: Mt = B2
t − t

Proof

E[Mt+s |Ft ] = E[B2
t+s − (t + s)|Ft ]

= E[((Bt+s − Bt) + Bt)
2|Ft ]− (t + s)

= E[(Bt+s − Bt)
2] + B2

t + 2BtE[Bt+s − Bt ]− (t + s)

= s + B2
t + 0 − (t + s) = B2

t − t = Mt



Application 2: Wald’s Identity

Expected Hitting Time

The process {B2
t∧τ − (t ∧ τ)} is a martingale. Applying martingale

stopping theorem:

E[B2
τ − τ ] = 0 =⇒ E[τ ] = E[B2

τ ]

We expand the expectation:

E[τ ] = a2P[Bτ = a] + (−b)2P[Bτ = −b]

= a2
(

b

a+ b

)
+ b2

(
1 − b

a+ b

)
= a2 b

a+ b
+ b2 a

a+ b
=

ab(a+ b)

a+ b
= ab



The Exponential Martingale

Definition and Proof

Define Mt = eθBt− θ2t
2 , for θ ∈ R.

E[Mt+s |Ft ] = E[eθBt+s− θ2(t+s)
2 |Ft ]

= eθBt− θ2t
2 e−

θ2s
2 E[eθ(Bt+s−Bt)]

= Mt · e−
θ2s
2 · e

θ2s
2 (MGF of N(0, s))

= Mt

Therefore {Mt , t ≥ 0} is a martingale, and E[MT ] = E[M0] = 1.



Change of Measure

Radon-Nikodym Derivative

Define a new measure P̃ to be: P̃(A) = E[MT · 1A] where MT ≥ 0
and E[MT ] = 1.

▶ In discrete set-up:
∑

ω∈ΩMT (ω)P(ω) = 1.

▶ Let A = {ω} =⇒ P̃(ω) = MT (ω)P(ω).

▶ This means MT (ω) =
P̃(ω)
P(ω) .

▶ More generally, MT = d P̃
dP(ω) a.s., is a Radon-Nikodym

derivative.

As we will see, Girsanov’s Theorem, uses appropriate MT to relate
Brownian motions under different measures.



The Gaussian example

▶ Consider rv B1,B2, . . . ,BT such that B1 = X1 ∼ N(0, 1) and
each increment Bm − Bm−1 = Xm ∼ N(0, 1) independent of
(B1, . . . ,Bm−1) under probability measure P.

▶ Then, letting x = (x1, . . . , xT ),EP[H(B1, . . . ,BT )] equals∫
x∈RT

H

(
x1, . . . ,

T∑
i=1

xi

)
f (x1) . . . f (xT )dx1 . . . dxT

where f is a pdf of N(0, 1).

▶ Let g be a pdf of N(µ, 1) and P̃ be the probability measure
under which the density f under P is replaced by g .



The Gaussian example

▶ We can re-express EP [H(B1, . . . ,BT )] as∫
x∈RT

H

(
x1, . . . ,

T∑
i=1

xi

)
f (x1) . . . f (xT )

g(x1) . . . g(xT )
g(x1) . . . g(xT )dx1 . . . dxT

▶ Thus,

EP [H(B1, . . . ,BT )] = EP̃[MTH(B1, . . . ,BT )]

where

MT =
f (x1) . . . f (xT )

g(x1) . . . g(xT )
= exp(−µ

T∑
i=1

xi − Tµ2/2).

▶ Clearly, MT > 0 for all x and EP̃MT = 1. The result extends
to Girsanov’s Theorem in continuous setting.



The Reflection Principle

Let B∗
t = sup0≤s≤t Bs .

Strong Markov Property

Let τ be a stopping time. The process B̂t = Bt+τ − Bτ is also a
Brownian motion, independent of Fτ .

Reflection Principle

Without loss of generality, fix t > 0.

P(B∗
t ≥ x ,Bt ≤ x − y) = P(B∗

t ≥ x ,Bt − Bτx ≤ −y)

= P(B∗
t ≥ x ,Bt − Bτx ≥ y) (by symmetry)

= P(B∗
t ≥ x ,Bt ≥ x + y)

= P(Bt ≥ x + y)



Reflection Principle (Visual)

y

x(0, 0)

x + y

x

x − y

T

The principle states that after hitting x , Path A and the reflected
Path B are equally likely (in your mind, replace the lines with
reflected non-differentiable Brownian paths!).



First Passage Time: CDF Derivation

From the reflection principle, P(B∗
t ≥ x ,Bt < x) = P(Bt > x).

▶ Now, consider the probability of the maximum being at least x :

P(B∗
t ≥ x) = P(B∗

t ≥ x ,Bt < x) + P(B∗
t ≥ x ,Bt ≥ x)

The second term is just P(Bt ≥ x) since Bt ≥ x =⇒ B∗
t ≥ x .

= P(Bt ≥ x) + P(Bt ≥ x) = 2P(Bt ≥ x)

▶ Let τa = inf{t : Bt = a}, for a > 0. The event {τa ≤ t} is the
same as {B∗

t ≥ a}.

P(τa ≤ t) = P(B∗
t ≥ a) = 2P(Bt ≥ a)





▶ The CDF is:

P(τa ≤ t) = 2P(Bt ≥ a) = 2
∫ ∞

a

1√
2πt

e−z2/2tdz

▶ Let Φ be N(0, 1) CDF (ϕ denotes its pdf). Then

P(τa ≤ t) = 2
(

1 − Φ

(
a√
t

))
.

▶ The PDF fτa(t) is the derivative with respect to t:

fτa(t) =
d

dt
P(τa ≤ t) = −2ϕ

(
a√
t

)
·
(
−1

2
at−3/2

)
=

a

t3/2
ϕ

(
a√
t

)
fa(t) =

a√
2πt3/2

e−a2/2t

This is known as the density of the Lévy distribution.
==



First Passage Time: Expectation

Expectation

We can show that the process is certain to hit a:

P(τa < ∞) =

∫ ∞

0
fτa(t)dt = 1

However, the expected time to do so is infinite:

E[τa] =
∫ ∞

0
t · fτa(t)dt =

∫ ∞

0

a√
2πt

e−a2/2tdt = ∞



Alternative Definition: Gaussian Process

Gaussian Process
A process {Xt : 0 ≤ t ≤ T} is a Gaussian process if for any
t1, . . . , tk , the vector (Xt1 , . . . ,Xtk ) has a Multivariate Gaussian
(MVG(µ,Σ)) distribution.

Brownian motion as a Gaussian Process
A Gaussian process {Xt} is a BM if:

i) X0 = 0
ii) Xt(ω) is continuous in t for all ω ∈ Ω.
iii) E[Xt ] = 0 for all t.
iv) Cov(Xt ,Xs) = min(s, t).



Gaussian Process: Proof of Independent Increments

▶ Independent increments is the only property that needs proof.

▶ Let 0 ≤ t1 < t2 < t3 < t4 ≤ T .

Cov(Xt4 − Xt3 ,Xt2 − Xt1)

= Cov(Xt4 ,Xt2 − Xt1)− Cov(Xt3 ,Xt2 − Xt1)

= Cov(Xt4 ,Xt2)− Cov(Xt4 ,Xt1)− Cov(Xt3 ,Xt2) + Cov(Xt3 ,Xt1)

= t2 − t1 − t2 + t1 = 0

▶ Since the increments are jointly Gaussian and have zero
covariance, they are independent. Thus, {Xt : t ≥ 0} is a BM.


