Stochastic Calculus Mathematical Finance

Brownian Motion

Fall 2025

Brownian Motion: Definition

Definition

A stochastic process $\{B(t): 0 \le t \le T\}$ on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$ is defined as a Brownian Motion if it satisfies the following:

- 1. $B_0 = 0$
- 2. $B(t_4) B(t_3)$ is independent of $B(t_2) B(t_1)$ for all $0 \le t_1 < t_2 < t_3 < t_4 \le T$
- 3. $B(t+s) B(s) \sim N(0,t)$ for all $s,t \geq 0$
- 4. $B(t,\omega)$ is a continuous function of t for every ω

Construction of BM: Simple Random Walk

- ▶ Let $X_1, X_2, ..., X_n$ be i.i.d, $X_i = \pm 1$ w.p. 1/2.
- ▶ Define $S_n = \sum_{i=1}^n X_i$ (Which is a simple random walk).
- ▶ Easy to see that $\{S_n : n \ge 1\}$ is a martingale and is a Markov process.

Markov Property in discrete settings

For $\{S_n : n \ge 1\}$ to be Markov, need to show that

$$\mathbb{P}[S_{n+1} = s_{n+1} | S_0 = s_0, S_1 = s_1, \dots, S_n = s_n] = \mathbb{P}[S_{n+1} = s_{n+1} | S_n = s_n]$$

We have

$$\mathbb{P}[S_{n+1} = s_{n+1} | S_0 = s_0, S_1 = s_1, \dots, S_n = s_n]$$

$$= \mathbb{P}[S_n + X_{n+1} = s_{n+1} | S_0 = s_0, S_1 = s_1, \dots, S_n = s_n]$$

$$= \mathbb{P}[X_{n+1} = s_{n+1} - s_n | S_0 = s_0, \dots, S_n = s_n]$$

$$= \mathbb{P}[X_{n+1} = s_{n+1} - s_n] \quad \text{(since } X_i \text{'s are independent)}$$

$$= \mathbb{P}[S_{n+1} = s_{n+1} | S_n = s_n]$$

Scaled Random Walk: Definition

▶ Define another process $\{B_n(t): 0 \le t \le T\}$ such that:

$$B_n(t) = \frac{S_{nt}}{\sqrt{n}}$$

when t is a multiple of n^{-1} , and a linear interpolation at other points.

- ► Time is scaled down by n and space by \sqrt{n} . $\{B_n(t): 0 \le t \le T\}$ is constructed
- ▶ We argue that $\{B_n(t): 0 \le t \le T\} \rightarrow \{B(t): 0 \le t \le T\}$. (This is known as the weak convergence of stochastic processes).

Scaled Random Walk: Properties (1/2)

1.

$$B_n(0) = \frac{S_0}{\sqrt{n}} = 0$$
 (By defn. of r.w.) (1)

2. Let $0 < t_1 < t_2 < t_3 < t_4 < T$. Then, roughly speaking

$$B_n(t_4) - B_n(t_3) = \frac{S_{nt_4} - S_{nt_3}}{\sqrt{n}} = \frac{\sum_{i=nt_3+1}^{nt_4} X_i}{\sqrt{n}}$$

$$B_n(t_2) - B_n(t_1) = \frac{S_{nt_2} - S_{nt_1}}{\sqrt{n}} = \frac{\sum_{i=nt_1+1}^{nt_2} X_i}{\sqrt{n}}$$

Since X_i 's are independent, asymptotically, for large n, $B_n(t_4) - B_n(t_3) \perp \!\!\!\perp B_n(t_2) - B_n(t_1)$.

Scaled Random Walk: Properties (2/2)

3.
$$B_n(t+s) - B_n(s) = \frac{S_{n(t+s)} - S_{ns}}{\sqrt{n}} = \frac{\sum_{i=ns+1}^{m(t+s)} X_i}{\sqrt{n}}$$

$$= \text{ in dist } \sqrt{t} \left(\frac{\sum_{i=1}^{nt} X_i}{\sqrt{nt}} \right) \xrightarrow{d} N(0,t) \quad \text{(By Central Limit Theorem)}$$

4. It can be verified that the limiting process $B(t,\omega)$ is continuous in t for each ω . In fact, it can be shown that it is continuous everywhere, but differentiable nowhere.

Brownian Motion is a Martingale

For $t, s \ge 0$:

$$\mathbb{E}[B_{t+s}|\mathcal{F}_t] = \mathbb{E}[B_{t+s} - B_t + B_t|\mathcal{F}_t]$$

By property (2) of BM, $B_{t+s} - B_t \perp \!\!\! \perp \mathcal{F}_t$.

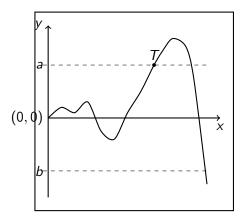
$$\implies \mathbb{E}[B_{t+s} - B_t | \mathcal{F}_t] = \mathbb{E}[B_{t+s} - B_t]$$

$$\implies \mathbb{E}[B_{t+s}|\mathcal{F}_t] = \mathbb{E}[B_{t+s} - B_t] + B_t = 0 + B_t = B_t$$

Also, it can be verified that $\mathbb{E}[|B_t|] < \infty$ [since its mean of |Z|, where $Z \sim N(0,1)$].

Stopping Time: Definition

Let $\tau = \inf\{t : B_t = a \text{ or } B_t = -b\}$, for a, b > 0.



Let's define the stopped process $Y_t = B_{t \wedge \tau}$.

Application 1: Exit Probability

Calculating the Probability

Since $B_{t\wedge\tau}$ is a martingale, $\mathbb{E}[B_{t\wedge\tau}] = \mathbb{E}[B_0] = 0$ for all t.

$$\implies \mathbb{E}[B_{\tau}] = 0$$

Now, we expand the expectation:

$$\mathbb{E}[B_{\tau}] = a\mathbb{P}[B_{\tau} = a] + (-b)\mathbb{P}[B_{\tau} = -b] = 0$$

- ightharpoonup We know $\mathbb{P}[B_{\tau}=a]+\mathbb{P}[B_{\tau}=-b]=1.$
- Substituting gives: $a\mathbb{P}[B_{\tau}=a]-b(1-\mathbb{P}[B_{\tau}=a])=0$.
- Solving for the probability:

$$(a+b)\mathbb{P}[B_{\tau}=a]=b \implies \mathbb{P}[B_{\tau}=a]=rac{b}{a+b}$$

Proof

$$\mathbb{E}[M_{t+s}|\mathcal{F}_t] = \mathbb{E}[B_{t+s}^2 - (t+s)|\mathcal{F}_t]$$

$$= \mathbb{E}[((B_{t+s} - B_t) + B_t)^2 | \mathcal{F}_t] - (t+s)$$

$$= \mathbb{E}[(B_{t+s} - B_t)^2] + B_t^2 + 2B_t \mathbb{E}[B_{t+s} - B_t] - (t+s)$$

$$= s + B_t^2 + 0 - (t+s) = B_t^2 - t = M_t$$

Application 2: Wald's Identity

Expected Hitting Time

The process $\{B_{t\wedge \tau}^2-(t\wedge \tau)\}$ is a martingale. Applying martingale stopping theorem:

$$\mathbb{E}[B_{\tau}^2 - \tau] = 0 \implies \mathbb{E}[\tau] = \mathbb{E}[B_{\tau}^2]$$

We expand the expectation:

$$\mathbb{E}[\tau] = a^{2} \mathbb{P}[B_{\tau} = a] + (-b)^{2} \mathbb{P}[B_{\tau} = -b]$$

$$= a^{2} \left(\frac{b}{a+b}\right) + b^{2} \left(1 - \frac{b}{a+b}\right)$$

$$= a^{2} \frac{b}{a+b} + b^{2} \frac{a}{a+b} = \frac{ab(a+b)}{a+b} = ab$$

The Exponential Martingale

Definition and Proof

Define $M_t = e^{\theta B_t - \frac{\theta^2 t}{2}}$, for $\theta \in \mathbb{R}$.

$$\mathbb{E}[M_{t+s}|\mathcal{F}_t] = \mathbb{E}[e^{\theta B_{t+s} - \frac{\theta^2(t+s)}{2}}|\mathcal{F}_t]$$

$$= e^{\theta B_t - \frac{\theta^2 t}{2}} e^{-\frac{\theta^2 s}{2}} \mathbb{E}[e^{\theta(B_{t+s} - B_t)}]$$

$$= M_t \cdot e^{-\frac{\theta^2 s}{2}} \cdot e^{\frac{\theta^2 s}{2}} \quad (MGF \text{ of } N(0, s))$$

$$= M_t$$

Therefore $\{M_t, t \geq 0\}$ is a martingale, and $\mathbb{E}[M_T] = \mathbb{E}[M_0] = 1$.

Change of Measure

Radon-Nikodym Derivative

Define a new measure $\tilde{\mathbb{P}}$ to be: $\tilde{\mathbb{P}}(A) = \mathbb{E}[M_T \cdot 1_A]$ where $M_T \geq 0$ and $\mathbb{E}[M_T] = 1$.

- ▶ In discrete set-up: $\sum_{\omega \in \Omega} M_T(\omega) \mathbb{P}(\omega) = 1$.
- ▶ Let $A = \{\omega\} \implies \tilde{\mathbb{P}}(\omega) = M_T(\omega)\mathbb{P}(\omega)$.
- ▶ This means $M_T(\omega) = \frac{\tilde{\mathbb{P}}(\omega)}{P(\omega)}$.
- ▶ More generally, $M_T = \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}(\omega)$ a.s., is a Radon-Nikodym derivative.

As we will see, Girsanov's Theorem, uses appropriate M_T to relate Brownian motions under different measures.

The Gaussian example

- ▶ Consider rv B_1, B_2, \ldots, B_T such that $B_1 = X_1 \sim N(0, 1)$ and each increment $B_m B_{m-1} = X_m \sim N(0, 1)$ independent of (B_1, \ldots, B_{m-1}) under probability measure \mathbb{P} .
- ▶ Then, letting $x = (x_1, ..., x_T), E_{\mathbb{P}}[H(B_1, ..., B_T)]$ equals

$$\int_{x \in \mathbb{R}^T} H\left(x_1, \dots, \sum_{i=1}^T x_i\right) f(x_1) \dots f(x_T) dx_1 \dots dx_T$$

where f is a pdf of N(0,1).

Let g be a pdf of $N(\mu, 1)$ and $\tilde{\mathbb{P}}$ be the probability measure under which the density f under \mathbb{P} is replaced by g.

The Gaussian example

• We can re-express $E_P[H(B_1,\ldots,B_T)]$ as

$$\int_{x \in \mathbb{R}^T} H\left(x_1, \ldots, \sum_{i=1}^T x_i\right) \frac{f(x_1) \ldots f(x_T)}{g(x_1) \ldots g(x_T)} g(x_1) \ldots g(x_T) dx_1 \ldots dx_T$$

Thus,

$$E_P[H(B_1,\ldots,B_T)]=E_{\widetilde{\mathbb{P}}}[M_TH(B_1,\ldots,B_T)]$$

where

$$M_T = \frac{f(x_1)\dots f(x_T)}{g(x_1)\dots g(x_T)} = \exp(-\mu \sum_{i=1}^{T} x_i - T\mu^2/2).$$

▶ Clearly, $M_T > 0$ for all x and $E_{\tilde{\mathbb{P}}}M_T = 1$. The result extends to Girsanov's Theorem in continuous setting.

The Reflection Principle

Let
$$B_t^* = \sup_{0 \le s \le t} B_s$$
.

Strong Markov Property

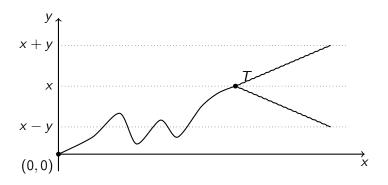
Let τ be a stopping time. The process $\hat{B}_t = B_{t+\tau} - B_{\tau}$ is also a Brownian motion, independent of \mathcal{F}_{τ} .

Reflection Principle

Without loss of generality, fix t > 0.

$$\begin{split} \mathbb{P}(\mathcal{B}_t^* \geq x, \mathcal{B}_t \leq x - y) &= \mathbb{P}(\mathcal{B}_t^* \geq x, \mathcal{B}_t - \mathcal{B}_{\tau_x} \leq -y) \\ &= \mathbb{P}(\mathcal{B}_t^* \geq x, \mathcal{B}_t - \mathcal{B}_{\tau_x} \geq y) \quad \text{(by symmetry)} \\ &= \mathbb{P}(\mathcal{B}_t^* \geq x, \mathcal{B}_t \geq x + y) \\ &= \mathbb{P}(\mathcal{B}_t \geq x + y) \end{split}$$

Reflection Principle (Visual)



The principle states that after hitting x, Path A and the reflected Path B are equally likely (in your mind, replace the lines with reflected non-differentiable Brownian paths!).

First Passage Time: CDF Derivation

From the reflection principle, $\mathbb{P}(B_t^* \ge x, B_t < x) = \mathbb{P}(B_t > x)$.

 \triangleright Now, consider the probability of the maximum being at least x:

$$\mathbb{P}(B_t^* \ge x) = \mathbb{P}(B_t^* \ge x, B_t < x) + \mathbb{P}(B_t^* \ge x, B_t \ge x)$$

The second term is just $\mathbb{P}(B_t \geq x)$ since $B_t \geq x \implies B_t^* \geq x$.

$$= \mathbb{P}(B_t \ge x) + \mathbb{P}(B_t \ge x) = 2\mathbb{P}(B_t \ge x)$$

Let $\tau_a = \inf\{t : B_t = a\}$, for a > 0. The event $\{\tau_a \le t\}$ is the same as $\{B_t^* \ge a\}$.

$$\mathbb{P}(\tau_{\mathsf{a}} \leq t) = \mathbb{P}(B_t^* \geq \mathsf{a}) = 2\mathbb{P}(B_t \geq \mathsf{a})$$

► The CDF is:

$$\mathbb{P}(\tau_a \le t) = 2\mathbb{P}(B_t \ge a) = 2\int_a^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-z^2/2t} dz$$

Let Φ be N(0,1) CDF (ϕ denotes its pdf). Then

$$\mathbb{P}(\tau_{\mathsf{a}} \leq t) = 2\left(1 - \Phi\left(\frac{\mathsf{a}}{\sqrt{t}}\right)\right).$$

▶ The PDF $f_{\tau_a}(t)$ is the derivative with respect to t:

$$f_{\tau_a}(t) = \frac{d}{dt} \mathbb{P}(\tau_a \le t) = -2\phi \left(\frac{a}{\sqrt{t}}\right) \cdot \left(-\frac{1}{2}at^{-3/2}\right)$$

$$= \frac{a}{t^{3/2}}\phi \left(\frac{a}{\sqrt{t}}\right)$$

$$f_a(t) = \frac{a}{\sqrt{2\pi}t^{3/2}}e^{-a^2/2t}$$

First Passage Time: Expectation

Expectation

We can show that the process is certain to hit a:

$$\mathbb{P}(au_{\mathsf{a}}<\infty)=\int_0^\infty f_{ au_{\mathsf{a}}}(t) dt=1$$

However, the expected time to do so is infinite:

$$\mathbb{E}[\tau_a] = \int_0^\infty t \cdot f_{\tau_a}(t) dt = \int_0^\infty \frac{a}{\sqrt{2\pi t}} e^{-a^2/2t} dt = \infty$$

Alternative Definition: Gaussian Process

Gaussian Process

A process $\{X_t: 0 \leq t \leq T\}$ is a Gaussian process if for any t_1, \ldots, t_k , the vector $(X_{t_1}, \ldots, X_{t_k})$ has a Multivariate Gaussian $(\mathsf{MVG}(\mu, \Sigma))$ distribution.

Brownian motion as a Gaussian Process

A Gaussian process $\{X_t\}$ is a BM if:

- i) $X_0 = 0$
- ii) $X_t(\omega)$ is continuous in t for all $\omega \in \Omega$.
- iii) $\mathbb{E}[X_t] = 0$ for all t.
- iv) $Cov(X_t, X_s) = min(s, t)$.

Gaussian Process: Proof of Independent Increments

▶ Independent increments is the only property that needs proof.

Let
$$0 \le t_1 < t_2 < t_3 < t_4 \le T$$
.

$$Cov(X_{t_4} - X_{t_3}, X_{t_2} - X_{t_1})$$

$$= Cov(X_{t_4}, X_{t_2} - X_{t_1}) - Cov(X_{t_3}, X_{t_2} - X_{t_1})$$

$$= Cov(X_{t_4}, X_{t_2}) - Cov(X_{t_4}, X_{t_1}) - Cov(X_{t_3}, X_{t_2}) + Cov(X_{t_3}, X_{t_1})$$

$$= t_2 - t_1 - t_2 + t_1 = 0$$

▶ Since the increments are jointly Gaussian and have zero covariance, they are independent. Thus, $\{X_t : t \ge 0\}$ is a BM.